Umberto Rosani, Enrico Bortoletto, Xiang Zhang, Bo-Wen Huang, Lu-Sheng Xin, Mart Krupovic, Chang-Ming Bai
{"title":"Ostreid herpesvirus 1 的长读转录组学发现了囊壳成熟模块的保守表达策略,并指出了一种规避基于 ADAR 的抗病毒防御机制。","authors":"Umberto Rosani, Enrico Bortoletto, Xiang Zhang, Bo-Wen Huang, Lu-Sheng Xin, Mart Krupovic, Chang-Ming Bai","doi":"10.1093/ve/veae088","DOIUrl":null,"url":null,"abstract":"<p><p>Ostreid herpesvirus 1 (OsHV-1), a member of the family <i>Malacoherpesviridae</i> (order <i>Herpesvirales</i>), is a major pathogen of bivalves. However, the molecular details of the malacoherpesvirus infection cycle and its overall similarity to the replication of mammalian herpesviruses (family <i>Orthoherpesviridae</i>) remain obscure. Here, to gain insights into the OsHV-1 biology, we performed long-read sequencing of infected blood clams, <i>Anadara broughtonii</i>, which yielded over one million OsHV-1 long reads. These data enabled the annotation of the viral genome with 78 gene units and 274 transcripts, of which 67 were polycistronic mRNAs, 35 ncRNAs, and 20 natural antisense transcripts (NATs). Transcriptomics and proteomics data indicate preferential transcription and independent translation of the capsid scaffold protein as an OsHV-1 capsid maturation protease isoform. The conservation of this transcriptional architecture across <i>Herpesvirales</i> likely indicates its functional importance and ancient origin. Moreover, we traced RNA editing events using short-read sequencing and supported the presence of inosine nucleotides in native OsHV-1 RNA, consistent with the activity of adenosine deaminase acting on dsRNA 1 (ADAR1). Our data suggest that, whereas RNA hyper-editing is concentrated in specific regions of the OsHV-1 genome, single-nucleotide editing is more dispersed along the OsHV-1 transcripts. In conclusion, we reveal the existence of conserved pan-<i>Herpesvirales</i> transcriptomic architecture of the capsid maturation module and uncover a transcription-based viral counter defence mechanism, which presumably facilitates the evasion of the host ADAR antiviral system.</p>","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"10 1","pages":"veae088"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565193/pdf/","citationCount":"0","resultStr":"{\"title\":\"Long-read transcriptomics of Ostreid herpesvirus 1 uncovers a conserved expression strategy for the capsid maturation module and pinpoints a mechanism for evasion of the ADAR-based antiviral defence.\",\"authors\":\"Umberto Rosani, Enrico Bortoletto, Xiang Zhang, Bo-Wen Huang, Lu-Sheng Xin, Mart Krupovic, Chang-Ming Bai\",\"doi\":\"10.1093/ve/veae088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ostreid herpesvirus 1 (OsHV-1), a member of the family <i>Malacoherpesviridae</i> (order <i>Herpesvirales</i>), is a major pathogen of bivalves. However, the molecular details of the malacoherpesvirus infection cycle and its overall similarity to the replication of mammalian herpesviruses (family <i>Orthoherpesviridae</i>) remain obscure. Here, to gain insights into the OsHV-1 biology, we performed long-read sequencing of infected blood clams, <i>Anadara broughtonii</i>, which yielded over one million OsHV-1 long reads. These data enabled the annotation of the viral genome with 78 gene units and 274 transcripts, of which 67 were polycistronic mRNAs, 35 ncRNAs, and 20 natural antisense transcripts (NATs). Transcriptomics and proteomics data indicate preferential transcription and independent translation of the capsid scaffold protein as an OsHV-1 capsid maturation protease isoform. The conservation of this transcriptional architecture across <i>Herpesvirales</i> likely indicates its functional importance and ancient origin. Moreover, we traced RNA editing events using short-read sequencing and supported the presence of inosine nucleotides in native OsHV-1 RNA, consistent with the activity of adenosine deaminase acting on dsRNA 1 (ADAR1). Our data suggest that, whereas RNA hyper-editing is concentrated in specific regions of the OsHV-1 genome, single-nucleotide editing is more dispersed along the OsHV-1 transcripts. In conclusion, we reveal the existence of conserved pan-<i>Herpesvirales</i> transcriptomic architecture of the capsid maturation module and uncover a transcription-based viral counter defence mechanism, which presumably facilitates the evasion of the host ADAR antiviral system.</p>\",\"PeriodicalId\":56026,\"journal\":{\"name\":\"Virus Evolution\",\"volume\":\"10 1\",\"pages\":\"veae088\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565193/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus Evolution\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/ve/veae088\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Evolution","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ve/veae088","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
Long-read transcriptomics of Ostreid herpesvirus 1 uncovers a conserved expression strategy for the capsid maturation module and pinpoints a mechanism for evasion of the ADAR-based antiviral defence.
Ostreid herpesvirus 1 (OsHV-1), a member of the family Malacoherpesviridae (order Herpesvirales), is a major pathogen of bivalves. However, the molecular details of the malacoherpesvirus infection cycle and its overall similarity to the replication of mammalian herpesviruses (family Orthoherpesviridae) remain obscure. Here, to gain insights into the OsHV-1 biology, we performed long-read sequencing of infected blood clams, Anadara broughtonii, which yielded over one million OsHV-1 long reads. These data enabled the annotation of the viral genome with 78 gene units and 274 transcripts, of which 67 were polycistronic mRNAs, 35 ncRNAs, and 20 natural antisense transcripts (NATs). Transcriptomics and proteomics data indicate preferential transcription and independent translation of the capsid scaffold protein as an OsHV-1 capsid maturation protease isoform. The conservation of this transcriptional architecture across Herpesvirales likely indicates its functional importance and ancient origin. Moreover, we traced RNA editing events using short-read sequencing and supported the presence of inosine nucleotides in native OsHV-1 RNA, consistent with the activity of adenosine deaminase acting on dsRNA 1 (ADAR1). Our data suggest that, whereas RNA hyper-editing is concentrated in specific regions of the OsHV-1 genome, single-nucleotide editing is more dispersed along the OsHV-1 transcripts. In conclusion, we reveal the existence of conserved pan-Herpesvirales transcriptomic architecture of the capsid maturation module and uncover a transcription-based viral counter defence mechanism, which presumably facilitates the evasion of the host ADAR antiviral system.
期刊介绍:
Virus Evolution is a new Open Access journal focusing on the long-term evolution of viruses, viruses as a model system for studying evolutionary processes, viral molecular epidemiology and environmental virology.
The aim of the journal is to provide a forum for original research papers, reviews, commentaries and a venue for in-depth discussion on the topics relevant to virus evolution.