Xuan Shi, Tiantian Feng, Kevin Huang, Sudarsana Reddy Kadiri, Jihwan Lee, Yijing Lu, Yubin Zhang, Louis Goldstein, Shrikanth Narayanan
{"title":"直接发音观察揭示了自监督语音模型的音素识别性能特征。","authors":"Xuan Shi, Tiantian Feng, Kevin Huang, Sudarsana Reddy Kadiri, Jihwan Lee, Yijing Lu, Yubin Zhang, Louis Goldstein, Shrikanth Narayanan","doi":"10.1121/10.0034430","DOIUrl":null,"url":null,"abstract":"<p><p>Variability in speech pronunciation is widely observed across different linguistic backgrounds, which impacts modern automatic speech recognition performance. Here, we evaluate the performance of a self-supervised speech model in phoneme recognition using direct articulatory evidence. Findings indicate significant differences in phoneme recognition, especially in front vowels, between American English and Indian English speakers. To gain a deeper understanding of these differences, we conduct real-time MRI-based articulatory analysis, revealing distinct velar region patterns during the production of specific front vowels. This underscores the need to deepen the scientific understanding of self-supervised speech model variances to advance robust and inclusive speech technology.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"4 11","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct articulatory observation reveals phoneme recognition performance characteristics of a self-supervised speech model.\",\"authors\":\"Xuan Shi, Tiantian Feng, Kevin Huang, Sudarsana Reddy Kadiri, Jihwan Lee, Yijing Lu, Yubin Zhang, Louis Goldstein, Shrikanth Narayanan\",\"doi\":\"10.1121/10.0034430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Variability in speech pronunciation is widely observed across different linguistic backgrounds, which impacts modern automatic speech recognition performance. Here, we evaluate the performance of a self-supervised speech model in phoneme recognition using direct articulatory evidence. Findings indicate significant differences in phoneme recognition, especially in front vowels, between American English and Indian English speakers. To gain a deeper understanding of these differences, we conduct real-time MRI-based articulatory analysis, revealing distinct velar region patterns during the production of specific front vowels. This underscores the need to deepen the scientific understanding of self-supervised speech model variances to advance robust and inclusive speech technology.</p>\",\"PeriodicalId\":73538,\"journal\":{\"name\":\"JASA express letters\",\"volume\":\"4 11\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JASA express letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0034430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0034430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
Direct articulatory observation reveals phoneme recognition performance characteristics of a self-supervised speech model.
Variability in speech pronunciation is widely observed across different linguistic backgrounds, which impacts modern automatic speech recognition performance. Here, we evaluate the performance of a self-supervised speech model in phoneme recognition using direct articulatory evidence. Findings indicate significant differences in phoneme recognition, especially in front vowels, between American English and Indian English speakers. To gain a deeper understanding of these differences, we conduct real-time MRI-based articulatory analysis, revealing distinct velar region patterns during the production of specific front vowels. This underscores the need to deepen the scientific understanding of self-supervised speech model variances to advance robust and inclusive speech technology.