直接发音观察揭示了自监督语音模型的音素识别性能特征。

IF 1.2 Q3 ACOUSTICS JASA express letters Pub Date : 2024-11-01 DOI:10.1121/10.0034430
Xuan Shi, Tiantian Feng, Kevin Huang, Sudarsana Reddy Kadiri, Jihwan Lee, Yijing Lu, Yubin Zhang, Louis Goldstein, Shrikanth Narayanan
{"title":"直接发音观察揭示了自监督语音模型的音素识别性能特征。","authors":"Xuan Shi, Tiantian Feng, Kevin Huang, Sudarsana Reddy Kadiri, Jihwan Lee, Yijing Lu, Yubin Zhang, Louis Goldstein, Shrikanth Narayanan","doi":"10.1121/10.0034430","DOIUrl":null,"url":null,"abstract":"<p><p>Variability in speech pronunciation is widely observed across different linguistic backgrounds, which impacts modern automatic speech recognition performance. Here, we evaluate the performance of a self-supervised speech model in phoneme recognition using direct articulatory evidence. Findings indicate significant differences in phoneme recognition, especially in front vowels, between American English and Indian English speakers. To gain a deeper understanding of these differences, we conduct real-time MRI-based articulatory analysis, revealing distinct velar region patterns during the production of specific front vowels. This underscores the need to deepen the scientific understanding of self-supervised speech model variances to advance robust and inclusive speech technology.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"4 11","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct articulatory observation reveals phoneme recognition performance characteristics of a self-supervised speech model.\",\"authors\":\"Xuan Shi, Tiantian Feng, Kevin Huang, Sudarsana Reddy Kadiri, Jihwan Lee, Yijing Lu, Yubin Zhang, Louis Goldstein, Shrikanth Narayanan\",\"doi\":\"10.1121/10.0034430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Variability in speech pronunciation is widely observed across different linguistic backgrounds, which impacts modern automatic speech recognition performance. Here, we evaluate the performance of a self-supervised speech model in phoneme recognition using direct articulatory evidence. Findings indicate significant differences in phoneme recognition, especially in front vowels, between American English and Indian English speakers. To gain a deeper understanding of these differences, we conduct real-time MRI-based articulatory analysis, revealing distinct velar region patterns during the production of specific front vowels. This underscores the need to deepen the scientific understanding of self-supervised speech model variances to advance robust and inclusive speech technology.</p>\",\"PeriodicalId\":73538,\"journal\":{\"name\":\"JASA express letters\",\"volume\":\"4 11\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JASA express letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0034430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0034430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

不同语言背景下的语音发音差异很大,这影响了现代自动语音识别的性能。在此,我们利用直接发音证据评估了自监督语音模型在音素识别方面的性能。研究结果表明,美式英语和印度英语发音人在音素识别方面存在明显差异,尤其是前元音。为了更深入地了解这些差异,我们进行了基于核磁共振成像的实时发音分析,揭示了在发出特定前元音时不同的 velar 区域模式。这突出表明,有必要加深对自监督语音模型差异的科学理解,以推进稳健而包容的语音技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct articulatory observation reveals phoneme recognition performance characteristics of a self-supervised speech model.

Variability in speech pronunciation is widely observed across different linguistic backgrounds, which impacts modern automatic speech recognition performance. Here, we evaluate the performance of a self-supervised speech model in phoneme recognition using direct articulatory evidence. Findings indicate significant differences in phoneme recognition, especially in front vowels, between American English and Indian English speakers. To gain a deeper understanding of these differences, we conduct real-time MRI-based articulatory analysis, revealing distinct velar region patterns during the production of specific front vowels. This underscores the need to deepen the scientific understanding of self-supervised speech model variances to advance robust and inclusive speech technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
The JIBO Kids Corpus: A speech dataset of child-robot interactions in a classroom environment. The perceptual distinctiveness of the [n-l] contrast in different vowel and tonal contexts. Ambient noise source characterization using spectral, coherence, and directionality estimates at Kongsfjorden. Speaker adaptation using codebook integrated deep neural networks for speech enhancement. Fundamental frequency predominantly drives talker differences in auditory brainstem responses to continuous speech.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1