从报销数据中衡量堕胎情况:科学现状如何?

Alice Abernathy, Maria I Rodriguez, Jonas J Swartz
{"title":"从报销数据中衡量堕胎情况:科学现状如何?","authors":"Alice Abernathy, Maria I Rodriguez, Jonas J Swartz","doi":"10.1016/j.contraception.2024.110750","DOIUrl":null,"url":null,"abstract":"<p><p>Health care insurance claims are an increasingly common data source for health outcomes research. While researchers have successfully used several claims data sources for many obstetric and gynecologic questions, use of claims data for abortion and contraception research poses a number of challenges. In this update on the state of the science in identifying abortion in claims data, we review claims data generally, describe commonly used claims data sources, and detail specific reasons why abortion may be underestimated in claims even when employing best practices. We provide examples of successful approaches for identifying abortion in claims, and importantly, spell out limitations when making comparisons across site of care, states, and policy contexts. As increased attention is turned to identifying abortion across diverse settings, it is critical best practices are applied so that the most appropriate inferences regarding abortion incidence across contexts over time are drawn.</p>","PeriodicalId":93955,"journal":{"name":"Contraception","volume":" ","pages":"110750"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring abortion in claims data: what is the state of the science?\",\"authors\":\"Alice Abernathy, Maria I Rodriguez, Jonas J Swartz\",\"doi\":\"10.1016/j.contraception.2024.110750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Health care insurance claims are an increasingly common data source for health outcomes research. While researchers have successfully used several claims data sources for many obstetric and gynecologic questions, use of claims data for abortion and contraception research poses a number of challenges. In this update on the state of the science in identifying abortion in claims data, we review claims data generally, describe commonly used claims data sources, and detail specific reasons why abortion may be underestimated in claims even when employing best practices. We provide examples of successful approaches for identifying abortion in claims, and importantly, spell out limitations when making comparisons across site of care, states, and policy contexts. As increased attention is turned to identifying abortion across diverse settings, it is critical best practices are applied so that the most appropriate inferences regarding abortion incidence across contexts over time are drawn.</p>\",\"PeriodicalId\":93955,\"journal\":{\"name\":\"Contraception\",\"volume\":\" \",\"pages\":\"110750\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contraception\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.contraception.2024.110750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contraception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.contraception.2024.110750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医疗保险理赔是健康结果研究中越来越常见的数据来源。虽然研究人员已经成功地将多个理赔数据源用于许多妇产科问题的研究,但将理赔数据用于流产和避孕研究却面临着许多挑战。在这份关于在索赔数据中识别人工流产的科学现状的最新报告中,我们对索赔数据进行了总体回顾,介绍了常用的索赔数据来源,并详细说明了即使采用最佳实践,人工流产也可能在索赔数据中被低估的具体原因。我们举例说明了在索赔中识别堕胎的成功方法,重要的是阐明了在对不同医疗机构、州和政策背景进行比较时的局限性。随着人们越来越关注在不同环境中识别人工流产,采用最佳实践至关重要,这样才能就不同环境下的人工流产发生率得出最合适的推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring abortion in claims data: what is the state of the science?

Health care insurance claims are an increasingly common data source for health outcomes research. While researchers have successfully used several claims data sources for many obstetric and gynecologic questions, use of claims data for abortion and contraception research poses a number of challenges. In this update on the state of the science in identifying abortion in claims data, we review claims data generally, describe commonly used claims data sources, and detail specific reasons why abortion may be underestimated in claims even when employing best practices. We provide examples of successful approaches for identifying abortion in claims, and importantly, spell out limitations when making comparisons across site of care, states, and policy contexts. As increased attention is turned to identifying abortion across diverse settings, it is critical best practices are applied so that the most appropriate inferences regarding abortion incidence across contexts over time are drawn.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-year efficacy, safety, and tolerability outcomes from a phase 3 study of a low-dose copper intrauterine device. Immigrant policy climates and contraceptive use among Mexican origin women in the US: Support for the "spill-over" hypothesis. Association of Body Mass Index on time to fetal expulsion for individuals undergoing medication abortion over 13 weeks gestational duration. Characteristics of patients requesting an abortion beyond 14 weeks of gestation: retrospective study in Brussels. Effects of multilevel postpartum family planning intervention on the reduction of unintended pregnancy and induced abortion rates within 12 months of delivery: a cluster randomized controlled study in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1