Kay Khaing Kyaw , Emma Baietti , Cristian Lussana , Valerio Luzzi , Paolo Mazzoli , Stefano Bagli , Attilio Castellarin
{"title":"私人传感器和众包降雨数据:挪威奥斯陆城市地区冲积洪水建模的准确性和潜力","authors":"Kay Khaing Kyaw , Emma Baietti , Cristian Lussana , Valerio Luzzi , Paolo Mazzoli , Stefano Bagli , Attilio Castellarin","doi":"10.1016/j.hydroa.2024.100191","DOIUrl":null,"url":null,"abstract":"<div><div>Cloudbursts and extreme rainstorms pose a growing threat to urban areas. Accurate rainfall data is essential for predicting inundations and urban flooding. Private weather stations are becoming increasingly common, and their spatial distribution roughly follows population density. This makes them a valuable source of crowdsourced data for high-resolution rainfall fields in urban areas. We evaluated the performance of private rain gauges in two recent pluvial flood events in Oslo. We also explored the potential use of private rain gauge data in inundation models. Our results indicate that private sensors have excellent rain detection capabilities, but they tend to underestimate the reference value on average by approximately 25%. However, bias-corrected crowdsourced rainfall data can produce significantly more accurate inundation maps than those generated from official rain gauges, if compared with maps resulting from bias-corrected weather radar. Overall, our study highlights the potential of utilizing crowdsourced rainfall data from private sensors for accurately representing pluvial flooding in urban areas. These findings have significant implications for improving flood prediction and mitigation strategies in vulnerable urban settings.</div></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"25 ","pages":"Article 100191"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Private sensors and crowdsourced rainfall data: Accuracy and potential for modelling pluvial flooding in urban areas of Oslo, Norway\",\"authors\":\"Kay Khaing Kyaw , Emma Baietti , Cristian Lussana , Valerio Luzzi , Paolo Mazzoli , Stefano Bagli , Attilio Castellarin\",\"doi\":\"10.1016/j.hydroa.2024.100191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cloudbursts and extreme rainstorms pose a growing threat to urban areas. Accurate rainfall data is essential for predicting inundations and urban flooding. Private weather stations are becoming increasingly common, and their spatial distribution roughly follows population density. This makes them a valuable source of crowdsourced data for high-resolution rainfall fields in urban areas. We evaluated the performance of private rain gauges in two recent pluvial flood events in Oslo. We also explored the potential use of private rain gauge data in inundation models. Our results indicate that private sensors have excellent rain detection capabilities, but they tend to underestimate the reference value on average by approximately 25%. However, bias-corrected crowdsourced rainfall data can produce significantly more accurate inundation maps than those generated from official rain gauges, if compared with maps resulting from bias-corrected weather radar. Overall, our study highlights the potential of utilizing crowdsourced rainfall data from private sensors for accurately representing pluvial flooding in urban areas. These findings have significant implications for improving flood prediction and mitigation strategies in vulnerable urban settings.</div></div>\",\"PeriodicalId\":36948,\"journal\":{\"name\":\"Journal of Hydrology X\",\"volume\":\"25 \",\"pages\":\"Article 100191\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S258991552400021X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258991552400021X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Private sensors and crowdsourced rainfall data: Accuracy and potential for modelling pluvial flooding in urban areas of Oslo, Norway
Cloudbursts and extreme rainstorms pose a growing threat to urban areas. Accurate rainfall data is essential for predicting inundations and urban flooding. Private weather stations are becoming increasingly common, and their spatial distribution roughly follows population density. This makes them a valuable source of crowdsourced data for high-resolution rainfall fields in urban areas. We evaluated the performance of private rain gauges in two recent pluvial flood events in Oslo. We also explored the potential use of private rain gauge data in inundation models. Our results indicate that private sensors have excellent rain detection capabilities, but they tend to underestimate the reference value on average by approximately 25%. However, bias-corrected crowdsourced rainfall data can produce significantly more accurate inundation maps than those generated from official rain gauges, if compared with maps resulting from bias-corrected weather radar. Overall, our study highlights the potential of utilizing crowdsourced rainfall data from private sensors for accurately representing pluvial flooding in urban areas. These findings have significant implications for improving flood prediction and mitigation strategies in vulnerable urban settings.