复合材料缺陷检测中的机器学习应用综述

Vahid Daghigh , Hamid Daghigh , Thomas E. Lacy Jr. , Mohammad Naraghi
{"title":"复合材料缺陷检测中的机器学习应用综述","authors":"Vahid Daghigh ,&nbsp;Hamid Daghigh ,&nbsp;Thomas E. Lacy Jr. ,&nbsp;Mohammad Naraghi","doi":"10.1016/j.mlwa.2024.100600","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning (ML) techniques have shown promising applications in a broad range of topics in engineering, composite materials behavior analysis, and manufacturing. This paper reviews successful ML implementations for defect and damage identification and progression in composites. The focus is on predicting composites' responses under specific loads and environments and optimizing setting and imperfection sensitivity. Discussions and recommendations toward promising ML implementation practices for fruitful interpretable results in the composites’ analysis are provided.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"18 ","pages":"Article 100600"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of machine learning applications for defect detection in composite materials\",\"authors\":\"Vahid Daghigh ,&nbsp;Hamid Daghigh ,&nbsp;Thomas E. Lacy Jr. ,&nbsp;Mohammad Naraghi\",\"doi\":\"10.1016/j.mlwa.2024.100600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine learning (ML) techniques have shown promising applications in a broad range of topics in engineering, composite materials behavior analysis, and manufacturing. This paper reviews successful ML implementations for defect and damage identification and progression in composites. The focus is on predicting composites' responses under specific loads and environments and optimizing setting and imperfection sensitivity. Discussions and recommendations toward promising ML implementation practices for fruitful interpretable results in the composites’ analysis are provided.</div></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"18 \",\"pages\":\"Article 100600\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827024000768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)技术在工程、复合材料行为分析和制造等广泛领域的应用前景广阔。本文回顾了在复合材料缺陷和损伤识别与发展方面成功的 ML 实施。重点是预测复合材料在特定载荷和环境下的反应,以及优化设置和缺陷敏感性。本文就复合材料分析中有望获得可解释结果的 ML 实施实践进行了讨论并提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review of machine learning applications for defect detection in composite materials
Machine learning (ML) techniques have shown promising applications in a broad range of topics in engineering, composite materials behavior analysis, and manufacturing. This paper reviews successful ML implementations for defect and damage identification and progression in composites. The focus is on predicting composites' responses under specific loads and environments and optimizing setting and imperfection sensitivity. Discussions and recommendations toward promising ML implementation practices for fruitful interpretable results in the composites’ analysis are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
期刊最新文献
Document Layout Error Rate (DLER) metric to evaluate image segmentation methods Supervised machine learning for microbiomics: Bridging the gap between current and best practices Playing with words: Comparing the vocabulary and lexical diversity of ChatGPT and humans A survey on knowledge distillation: Recent advancements Texas rural land market integration: A causal analysis using machine learning applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1