{"title":"利用深度强化学习(DRL)最大限度降低视频点播(VoD)存储系统的功耗","authors":"Minseok Song, Mingoo Kwon","doi":"10.1016/j.future.2024.107582","DOIUrl":null,"url":null,"abstract":"<div><div>As video streaming services such as Netflix become popular, resolving the problem of high power consumption arising from both large data size and high bandwidth in video storage systems has become important. However, because various factors, such as the power characteristics of heterogeneous storage devices, variable workloads, and disk array models, influence storage power consumption, reducing power consumption with deterministic policies is ineffective. To address this, we present a new deep reinforcement learning (DRL)-based file placement algorithm for replication-based video storage systems, which aims to minimize overall storage power consumption. We first model the video storage system with time-varying streaming workloads as the DRL environment, in which the agent aims to find power-efficient file placement. We then propose a proximal policy optimization (PPO) algorithm, consisting of (1) an action space that determines the placement of each file; (2) an observation space that allows the agent to learn a power-efficient placement based on the current I/O bandwidth utilization; (3) a reward model that assigns a greater penalty for increased power consumption for each action; and (4) an action masking model that supports effective learning by preventing agents from selecting unnecessary actions. Extensive simulations were performed to evaluate the proposed scheme under various solid-state disk (SSD) models and replication configurations. Results show that our scheme reduces storage power consumption by 5% to 25.8% (average 12%) compared to existing benchmark methods known to be effective for file placement.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"164 ","pages":"Article 107582"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Deep Reinforcement Learning (DRL) for minimizing power consumption in Video-on-Demand (VoD) storage systems\",\"authors\":\"Minseok Song, Mingoo Kwon\",\"doi\":\"10.1016/j.future.2024.107582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As video streaming services such as Netflix become popular, resolving the problem of high power consumption arising from both large data size and high bandwidth in video storage systems has become important. However, because various factors, such as the power characteristics of heterogeneous storage devices, variable workloads, and disk array models, influence storage power consumption, reducing power consumption with deterministic policies is ineffective. To address this, we present a new deep reinforcement learning (DRL)-based file placement algorithm for replication-based video storage systems, which aims to minimize overall storage power consumption. We first model the video storage system with time-varying streaming workloads as the DRL environment, in which the agent aims to find power-efficient file placement. We then propose a proximal policy optimization (PPO) algorithm, consisting of (1) an action space that determines the placement of each file; (2) an observation space that allows the agent to learn a power-efficient placement based on the current I/O bandwidth utilization; (3) a reward model that assigns a greater penalty for increased power consumption for each action; and (4) an action masking model that supports effective learning by preventing agents from selecting unnecessary actions. Extensive simulations were performed to evaluate the proposed scheme under various solid-state disk (SSD) models and replication configurations. Results show that our scheme reduces storage power consumption by 5% to 25.8% (average 12%) compared to existing benchmark methods known to be effective for file placement.</div></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"164 \",\"pages\":\"Article 107582\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X24005466\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24005466","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Using Deep Reinforcement Learning (DRL) for minimizing power consumption in Video-on-Demand (VoD) storage systems
As video streaming services such as Netflix become popular, resolving the problem of high power consumption arising from both large data size and high bandwidth in video storage systems has become important. However, because various factors, such as the power characteristics of heterogeneous storage devices, variable workloads, and disk array models, influence storage power consumption, reducing power consumption with deterministic policies is ineffective. To address this, we present a new deep reinforcement learning (DRL)-based file placement algorithm for replication-based video storage systems, which aims to minimize overall storage power consumption. We first model the video storage system with time-varying streaming workloads as the DRL environment, in which the agent aims to find power-efficient file placement. We then propose a proximal policy optimization (PPO) algorithm, consisting of (1) an action space that determines the placement of each file; (2) an observation space that allows the agent to learn a power-efficient placement based on the current I/O bandwidth utilization; (3) a reward model that assigns a greater penalty for increased power consumption for each action; and (4) an action masking model that supports effective learning by preventing agents from selecting unnecessary actions. Extensive simulations were performed to evaluate the proposed scheme under various solid-state disk (SSD) models and replication configurations. Results show that our scheme reduces storage power consumption by 5% to 25.8% (average 12%) compared to existing benchmark methods known to be effective for file placement.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.