在边缘重新训练 DNN 时对与记忆相关的超参数进行自适应集合优化

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Future Generation Computer Systems-The International Journal of Escience Pub Date : 2024-11-10 DOI:10.1016/j.future.2024.107600
Yidong Xu , Rui Han , Xiaojiang Zuo , Junyan Ouyang , Chi Harold Liu , Lydia Y. Chen
{"title":"在边缘重新训练 DNN 时对与记忆相关的超参数进行自适应集合优化","authors":"Yidong Xu ,&nbsp;Rui Han ,&nbsp;Xiaojiang Zuo ,&nbsp;Junyan Ouyang ,&nbsp;Chi Harold Liu ,&nbsp;Lydia Y. Chen","doi":"10.1016/j.future.2024.107600","DOIUrl":null,"url":null,"abstract":"<div><div>Edge applications are increasingly empowered by deep neural networks (DNN) and face the challenges of adapting or retraining models for the changes in input data domains and learning tasks. The existing techniques to enable DNN retraining on edge devices are to configure the memory-related hyperparameters, termed <em>m</em>-hyperparameters, via batch size reduction, parameter freezing, and gradient checkpoint. While those methods show promising results for static DNNs, little is known about how to online and opportunistically optimize all their <em>m</em>-hyperparameters, especially for retraining tasks of edge applications. In this paper, we propose, MPOptimizer, which jointly optimizes an ensemble of <em>m</em>-hyperparameters according to the input distribution and available edge resources at runtime. The key feature of MPOptimizer is to easily emulate the execution of retraining tasks under different <em>m</em>-hyperparameters and thus effectively estimate their influence on task performance. We implement MPOptimizer on prevalent DNNs and demonstrate its effectiveness against state-of-the-art techniques, i.e. successfully find the best configuration that improves model accuracy by an average of 13% (up to 25.3%) while reducing memory and training time by 4.1x and 5.3x under the same model accuracies.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"164 ","pages":"Article 107600"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive ensemble optimization for memory-related hyperparameters in retraining DNN at edge\",\"authors\":\"Yidong Xu ,&nbsp;Rui Han ,&nbsp;Xiaojiang Zuo ,&nbsp;Junyan Ouyang ,&nbsp;Chi Harold Liu ,&nbsp;Lydia Y. Chen\",\"doi\":\"10.1016/j.future.2024.107600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Edge applications are increasingly empowered by deep neural networks (DNN) and face the challenges of adapting or retraining models for the changes in input data domains and learning tasks. The existing techniques to enable DNN retraining on edge devices are to configure the memory-related hyperparameters, termed <em>m</em>-hyperparameters, via batch size reduction, parameter freezing, and gradient checkpoint. While those methods show promising results for static DNNs, little is known about how to online and opportunistically optimize all their <em>m</em>-hyperparameters, especially for retraining tasks of edge applications. In this paper, we propose, MPOptimizer, which jointly optimizes an ensemble of <em>m</em>-hyperparameters according to the input distribution and available edge resources at runtime. The key feature of MPOptimizer is to easily emulate the execution of retraining tasks under different <em>m</em>-hyperparameters and thus effectively estimate their influence on task performance. We implement MPOptimizer on prevalent DNNs and demonstrate its effectiveness against state-of-the-art techniques, i.e. successfully find the best configuration that improves model accuracy by an average of 13% (up to 25.3%) while reducing memory and training time by 4.1x and 5.3x under the same model accuracies.</div></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"164 \",\"pages\":\"Article 107600\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X24005648\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24005648","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

边缘应用越来越多地采用深度神经网络(DNN),并面临着根据输入数据域和学习任务的变化调整或重新训练模型的挑战。在边缘设备上实现 DNN 再训练的现有技术是通过减少批量大小、参数冻结和梯度检查点来配置与记忆相关的超参数(称为 m-超参数)。虽然这些方法在静态 DNN 上显示出良好的效果,但对于如何在线并适时地优化所有 m-hyperparameters 却知之甚少,尤其是在边缘应用的再训练任务中。在本文中,我们提出了 MPOptimizer,它可以在运行时根据输入分布和可用的边缘资源联合优化 m 个全参数集合。MPOptimizer 的主要特点是可以轻松模拟不同 m-hyperparameters 下的再训练任务执行情况,从而有效估计它们对任务性能的影响。我们在流行的 DNN 上实现了 MPOptimizer,并证明了它对最先进技术的有效性,即成功找到了最佳配置,在相同模型精度下,平均提高模型精度 13%(最高达 25.3%),同时减少内存和训练时间 4.1 倍和 5.3 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive ensemble optimization for memory-related hyperparameters in retraining DNN at edge
Edge applications are increasingly empowered by deep neural networks (DNN) and face the challenges of adapting or retraining models for the changes in input data domains and learning tasks. The existing techniques to enable DNN retraining on edge devices are to configure the memory-related hyperparameters, termed m-hyperparameters, via batch size reduction, parameter freezing, and gradient checkpoint. While those methods show promising results for static DNNs, little is known about how to online and opportunistically optimize all their m-hyperparameters, especially for retraining tasks of edge applications. In this paper, we propose, MPOptimizer, which jointly optimizes an ensemble of m-hyperparameters according to the input distribution and available edge resources at runtime. The key feature of MPOptimizer is to easily emulate the execution of retraining tasks under different m-hyperparameters and thus effectively estimate their influence on task performance. We implement MPOptimizer on prevalent DNNs and demonstrate its effectiveness against state-of-the-art techniques, i.e. successfully find the best configuration that improves model accuracy by an average of 13% (up to 25.3%) while reducing memory and training time by 4.1x and 5.3x under the same model accuracies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
期刊最新文献
DSDM-TCSE: Deterministic storage and deletion mechanism for trusted cloud service environments Securing IoMT healthcare systems with federated learning and BigchainDB Identifying runtime libraries in statically linked linux binaries A personalized federated cloud-edge collaboration framework via cross-client knowledge distillation BCBA: An IIoT encrypted traffic classifier based on a serial network model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1