Fei Tang , Mo Chen , Yuhan Guo , Jinzhou Sun , Xiaoqing Wei , Jiaquan Yang , Xuehao He
{"title":"利用慢相干理论和全态嵌入法优化网格结构","authors":"Fei Tang , Mo Chen , Yuhan Guo , Jinzhou Sun , Xiaoqing Wei , Jiaquan Yang , Xuehao He","doi":"10.1016/j.ijepes.2024.110367","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the issue of complex fault oscillation modes and weak voltage points in large power systems by proposing a network structure optimization method that balances system synchrony and node voltage stability. The method uses slow synchrony clustering theory to establish node classification criteria and a comprehensive synchrony indicator for quantitative description of network synchrony performance. Simultaneously, it employs the holomorphic embedding method to solve the voltage sigma indicator for quantitative assessment of voltage stability. A model that considers both system synchrony and node voltage stability is then developed and optimized using a discrete particle swarm algorithm in simulations with 13-node, 118-node, and 2383-wp systems, compared to other classical algorithms. Simulation results show that the proposed optimization method effectively improves the synchrony clustering performance and voltage stability of the test systems, offering faster optimization speed and better results compared to other classical algorithms.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"164 ","pages":"Article 110367"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grid structure optimization using slow coherency theory and holomorphic embedding method\",\"authors\":\"Fei Tang , Mo Chen , Yuhan Guo , Jinzhou Sun , Xiaoqing Wei , Jiaquan Yang , Xuehao He\",\"doi\":\"10.1016/j.ijepes.2024.110367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses the issue of complex fault oscillation modes and weak voltage points in large power systems by proposing a network structure optimization method that balances system synchrony and node voltage stability. The method uses slow synchrony clustering theory to establish node classification criteria and a comprehensive synchrony indicator for quantitative description of network synchrony performance. Simultaneously, it employs the holomorphic embedding method to solve the voltage sigma indicator for quantitative assessment of voltage stability. A model that considers both system synchrony and node voltage stability is then developed and optimized using a discrete particle swarm algorithm in simulations with 13-node, 118-node, and 2383-wp systems, compared to other classical algorithms. Simulation results show that the proposed optimization method effectively improves the synchrony clustering performance and voltage stability of the test systems, offering faster optimization speed and better results compared to other classical algorithms.</div></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":\"164 \",\"pages\":\"Article 110367\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061524005908\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524005908","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Grid structure optimization using slow coherency theory and holomorphic embedding method
This paper addresses the issue of complex fault oscillation modes and weak voltage points in large power systems by proposing a network structure optimization method that balances system synchrony and node voltage stability. The method uses slow synchrony clustering theory to establish node classification criteria and a comprehensive synchrony indicator for quantitative description of network synchrony performance. Simultaneously, it employs the holomorphic embedding method to solve the voltage sigma indicator for quantitative assessment of voltage stability. A model that considers both system synchrony and node voltage stability is then developed and optimized using a discrete particle swarm algorithm in simulations with 13-node, 118-node, and 2383-wp systems, compared to other classical algorithms. Simulation results show that the proposed optimization method effectively improves the synchrony clustering performance and voltage stability of the test systems, offering faster optimization speed and better results compared to other classical algorithms.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.