Peng Zhao , Shaocong Guo , Yanan Li , Shusen Yang , Xuebin Ren
{"title":"FedGen:带有数据生成功能的个性化联合学习,可增强模型定制和类不平衡性","authors":"Peng Zhao , Shaocong Guo , Yanan Li , Shusen Yang , Xuebin Ren","doi":"10.1016/j.future.2024.107595","DOIUrl":null,"url":null,"abstract":"<div><div>Federated learning has emerged as a prominent solution for the collaborative training of machine learning models without exchanging local data. However, existing approaches often impose rigid constraints on model heterogeneity, limiting the ability of clients to customize unique models and increasing the vulnerability of models to potential attacks. This paper presents FedGen, a novel personalized federated learning framework based on generative adversarial networks (GANs). FedGen shifts the focus from training task-specific models to generating data, especially for minority classes with imbalanced data. With FedGen, clients can gain knowledge from others by training generators, while maintaining a heterogeneous local model and avoiding sharing model information with other participants. Moreover, to address challenges arising from imbalanced data, we propose AT-GAN, a novel generative model incorporating pseudo augmentation and differentiable augmentation modules to foster healthy competition between the generator and discriminator. To evaluate the effectiveness of our approach, we conduct extensive experiments on real-world tabular datasets. The experimental results demonstrate that FedGen significantly enhances the performance of local models, achieving improvements of up to 11.92% in F1 score and up to 9.14% in MCC score compared to existing methods.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"164 ","pages":"Article 107595"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FedGen: Personalized federated learning with data generation for enhanced model customization and class imbalance\",\"authors\":\"Peng Zhao , Shaocong Guo , Yanan Li , Shusen Yang , Xuebin Ren\",\"doi\":\"10.1016/j.future.2024.107595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Federated learning has emerged as a prominent solution for the collaborative training of machine learning models without exchanging local data. However, existing approaches often impose rigid constraints on model heterogeneity, limiting the ability of clients to customize unique models and increasing the vulnerability of models to potential attacks. This paper presents FedGen, a novel personalized federated learning framework based on generative adversarial networks (GANs). FedGen shifts the focus from training task-specific models to generating data, especially for minority classes with imbalanced data. With FedGen, clients can gain knowledge from others by training generators, while maintaining a heterogeneous local model and avoiding sharing model information with other participants. Moreover, to address challenges arising from imbalanced data, we propose AT-GAN, a novel generative model incorporating pseudo augmentation and differentiable augmentation modules to foster healthy competition between the generator and discriminator. To evaluate the effectiveness of our approach, we conduct extensive experiments on real-world tabular datasets. The experimental results demonstrate that FedGen significantly enhances the performance of local models, achieving improvements of up to 11.92% in F1 score and up to 9.14% in MCC score compared to existing methods.</div></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"164 \",\"pages\":\"Article 107595\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X24005594\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24005594","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
FedGen: Personalized federated learning with data generation for enhanced model customization and class imbalance
Federated learning has emerged as a prominent solution for the collaborative training of machine learning models without exchanging local data. However, existing approaches often impose rigid constraints on model heterogeneity, limiting the ability of clients to customize unique models and increasing the vulnerability of models to potential attacks. This paper presents FedGen, a novel personalized federated learning framework based on generative adversarial networks (GANs). FedGen shifts the focus from training task-specific models to generating data, especially for minority classes with imbalanced data. With FedGen, clients can gain knowledge from others by training generators, while maintaining a heterogeneous local model and avoiding sharing model information with other participants. Moreover, to address challenges arising from imbalanced data, we propose AT-GAN, a novel generative model incorporating pseudo augmentation and differentiable augmentation modules to foster healthy competition between the generator and discriminator. To evaluate the effectiveness of our approach, we conduct extensive experiments on real-world tabular datasets. The experimental results demonstrate that FedGen significantly enhances the performance of local models, achieving improvements of up to 11.92% in F1 score and up to 9.14% in MCC score compared to existing methods.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.