ICESat-2 时间序列高度测量的精度波动

Xu Wang , Xinlian Liang , Weishu Gong , Pasi Häkli , Yunsheng Wang
{"title":"ICESat-2 时间序列高度测量的精度波动","authors":"Xu Wang ,&nbsp;Xinlian Liang ,&nbsp;Weishu Gong ,&nbsp;Pasi Häkli ,&nbsp;Yunsheng Wang","doi":"10.1016/j.jag.2024.104234","DOIUrl":null,"url":null,"abstract":"<div><div>The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) mission, spanning the past five years, has collected extensive three-dimensional Earth observation data, facilitating the understanding of environmental changes on a global scale. Its key product, Land and Vegetation Height (ATL08), offers global land and vegetation height data for carbon budget and cycle modeling. Consistent measurement accuracy of ATL08 is crucial for reliable time series analysis. However, fluctuations in the temporal accuracy of ATL08 data have been ignored in previous studies, leading to unknown uncertainties in existing time-series analyses. To bridge the knowledge gap, this study analyzes 59 months of ATL08 version 006 data in Finland to assess terrain and surface height accuracy, with a focus on temporal fluctuations across six major land cover types. A random forest (RF) model is employed to quantify the relative importance of error factors affecting height accuracy. Moreover, the study assesses accuracy at two official spatial resolutions, i.e., 100 m × 11 m and 20 m × 11 m, to evaluate the capability of ATL08 for the high-resolution height retrieval. For the terrain, the 100 m segment shows a bias of 0.04 m, a mean absolute error (MAE) of 0.44 m, and a root mean square error (RMSE) of 0.66 m, while the 20 m segment exhibits a bias of 0.10 m, a MAE of 0.35 m, and an RMSE of 0.49 m. For the surface height, the 100 m segment shows a bias of −0.59 m, a MAE of 3.06 m, an RMSE of 4.52 m, a bias% of −3.45 %, a MAE% of 21.26 %, and an RMSE% of 31.40 %. The 20 m segment exhibits a bias of −0.72 m, a MAE of 3.51 m, an RMSE of 5.23 m, a bias% of −5.81 %, a MAE% of 28.52 %, and an RMSE% of 42.47 %. The results indicate that improving segment resolution enhances terrain accuracy but reduces surface height accuracy. According to the error factor analysis, surface coverage and beam type are crucial for terrain retrieval accuracy, with their effects varying over time. Seasonal changes, particularly the presence of snow, affect terrain retrieval accuracy, with the lowest accuracy observed around March each year. This study confirms the critical impact of surface height on its retrieval accuracy and suggests avoiding the use of ATL08 for retrieving low target surface heights, especially in steep terrains. Nevertheless, the analysis affirms the applicability of ATL08 for canopy height estimation in boreal forests, primarily composed of coniferous species, highlighting its potential for extensive spatial and temporal research. This contributes to bridging the gaps between accurate estimates and large area coverage in global carbon budget and cycle studies. Additionally, the findings reveal that similar issues may exist in other satellite laser altimetry missions, emphasizing the important impacts of temporal fluctuations in surface and terrain accuracy when utilizing satellite laser altimetry datasets.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"135 ","pages":"Article 104234"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accuracy fluctuations of ICESat-2 height measurements in time series\",\"authors\":\"Xu Wang ,&nbsp;Xinlian Liang ,&nbsp;Weishu Gong ,&nbsp;Pasi Häkli ,&nbsp;Yunsheng Wang\",\"doi\":\"10.1016/j.jag.2024.104234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) mission, spanning the past five years, has collected extensive three-dimensional Earth observation data, facilitating the understanding of environmental changes on a global scale. Its key product, Land and Vegetation Height (ATL08), offers global land and vegetation height data for carbon budget and cycle modeling. Consistent measurement accuracy of ATL08 is crucial for reliable time series analysis. However, fluctuations in the temporal accuracy of ATL08 data have been ignored in previous studies, leading to unknown uncertainties in existing time-series analyses. To bridge the knowledge gap, this study analyzes 59 months of ATL08 version 006 data in Finland to assess terrain and surface height accuracy, with a focus on temporal fluctuations across six major land cover types. A random forest (RF) model is employed to quantify the relative importance of error factors affecting height accuracy. Moreover, the study assesses accuracy at two official spatial resolutions, i.e., 100 m × 11 m and 20 m × 11 m, to evaluate the capability of ATL08 for the high-resolution height retrieval. For the terrain, the 100 m segment shows a bias of 0.04 m, a mean absolute error (MAE) of 0.44 m, and a root mean square error (RMSE) of 0.66 m, while the 20 m segment exhibits a bias of 0.10 m, a MAE of 0.35 m, and an RMSE of 0.49 m. For the surface height, the 100 m segment shows a bias of −0.59 m, a MAE of 3.06 m, an RMSE of 4.52 m, a bias% of −3.45 %, a MAE% of 21.26 %, and an RMSE% of 31.40 %. The 20 m segment exhibits a bias of −0.72 m, a MAE of 3.51 m, an RMSE of 5.23 m, a bias% of −5.81 %, a MAE% of 28.52 %, and an RMSE% of 42.47 %. The results indicate that improving segment resolution enhances terrain accuracy but reduces surface height accuracy. According to the error factor analysis, surface coverage and beam type are crucial for terrain retrieval accuracy, with their effects varying over time. Seasonal changes, particularly the presence of snow, affect terrain retrieval accuracy, with the lowest accuracy observed around March each year. This study confirms the critical impact of surface height on its retrieval accuracy and suggests avoiding the use of ATL08 for retrieving low target surface heights, especially in steep terrains. Nevertheless, the analysis affirms the applicability of ATL08 for canopy height estimation in boreal forests, primarily composed of coniferous species, highlighting its potential for extensive spatial and temporal research. This contributes to bridging the gaps between accurate estimates and large area coverage in global carbon budget and cycle studies. Additionally, the findings reveal that similar issues may exist in other satellite laser altimetry missions, emphasizing the important impacts of temporal fluctuations in surface and terrain accuracy when utilizing satellite laser altimetry datasets.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"135 \",\"pages\":\"Article 104234\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224005909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

冰、云和陆地高程卫星-2(ICESat-2)飞行任务在过去五年中收集了大量三维地球观测数据,促进了对全球环境变化的了解。其主要产品陆地和植被高度(ATL08)为碳预算和碳循环建模提供了全球陆地和植被高度数据。ATL08 测量精度的一致性对于可靠的时间序列分析至关重要。然而,以往的研究忽略了 ATL08 数据时间精度的波动,导致现有的时间序列分析存在未知的不确定性。为弥补这一知识空白,本研究分析了芬兰 59 个月的 ATL08 006 版数据,以评估地形和地表高度精度,重点关注六种主要土地覆被类型的时间波动。采用随机森林 (RF) 模型来量化影响高度精度的误差因素的相对重要性。此外,研究还评估了两种官方空间分辨率(即 100 米×11 米和 20 米×11 米)下的精度,以评估 ATL08 在高分辨率高度检索方面的能力。在地形方面,100 米分辨率段的偏差为 0.04 米,平均绝对误差(MAE)为 0.44 米,均方根误差(RMSE)为 0.66 米;20 米分辨率段的偏差为 0.10 米,MAE 为 0.在地表高度方面,100 米航段的偏差为-0.59 米,均方根误差为 3.06 米,均方根误差为 4.52 米,偏差%为-3.45%,均方根误差%为 21.26%,均方根误差%为 31.40%。20 米分段的偏差为-0.72 米,最大允许误差为 3.51 米,有效误差为 5.23 米,偏差%为-5.81%,最大允许误差为 28.52%,有效误差为 42.47%。结果表明,提高分段分辨率可提高地形精度,但会降低地表高度精度。根据误差因素分析,地表覆盖率和光束类型对地形检索精度至关重要,其影响随时间而变化。季节变化,尤其是下雪,会影响地形检索精度,每年 3 月前后的精度最低。这项研究证实了地表高度对检索精度的关键影响,并建议避免使用 ATL08 来检索低目标地表高度,尤其是在陡峭的地形中。尽管如此,分析结果还是肯定了 ATL08 在北方森林(主要由针叶树种组成)冠层高度估算中的适用性,突出了其在广泛的时空研究中的潜力。这有助于缩小全球碳预算和碳循环研究中精确估算和大面积覆盖之间的差距。此外,研究结果还揭示了其他卫星激光测高任务中可能存在的类似问题,强调了在利用卫星激光测高数据集时,地表和地形精度的时间波动所产生的重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accuracy fluctuations of ICESat-2 height measurements in time series
The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) mission, spanning the past five years, has collected extensive three-dimensional Earth observation data, facilitating the understanding of environmental changes on a global scale. Its key product, Land and Vegetation Height (ATL08), offers global land and vegetation height data for carbon budget and cycle modeling. Consistent measurement accuracy of ATL08 is crucial for reliable time series analysis. However, fluctuations in the temporal accuracy of ATL08 data have been ignored in previous studies, leading to unknown uncertainties in existing time-series analyses. To bridge the knowledge gap, this study analyzes 59 months of ATL08 version 006 data in Finland to assess terrain and surface height accuracy, with a focus on temporal fluctuations across six major land cover types. A random forest (RF) model is employed to quantify the relative importance of error factors affecting height accuracy. Moreover, the study assesses accuracy at two official spatial resolutions, i.e., 100 m × 11 m and 20 m × 11 m, to evaluate the capability of ATL08 for the high-resolution height retrieval. For the terrain, the 100 m segment shows a bias of 0.04 m, a mean absolute error (MAE) of 0.44 m, and a root mean square error (RMSE) of 0.66 m, while the 20 m segment exhibits a bias of 0.10 m, a MAE of 0.35 m, and an RMSE of 0.49 m. For the surface height, the 100 m segment shows a bias of −0.59 m, a MAE of 3.06 m, an RMSE of 4.52 m, a bias% of −3.45 %, a MAE% of 21.26 %, and an RMSE% of 31.40 %. The 20 m segment exhibits a bias of −0.72 m, a MAE of 3.51 m, an RMSE of 5.23 m, a bias% of −5.81 %, a MAE% of 28.52 %, and an RMSE% of 42.47 %. The results indicate that improving segment resolution enhances terrain accuracy but reduces surface height accuracy. According to the error factor analysis, surface coverage and beam type are crucial for terrain retrieval accuracy, with their effects varying over time. Seasonal changes, particularly the presence of snow, affect terrain retrieval accuracy, with the lowest accuracy observed around March each year. This study confirms the critical impact of surface height on its retrieval accuracy and suggests avoiding the use of ATL08 for retrieving low target surface heights, especially in steep terrains. Nevertheless, the analysis affirms the applicability of ATL08 for canopy height estimation in boreal forests, primarily composed of coniferous species, highlighting its potential for extensive spatial and temporal research. This contributes to bridging the gaps between accurate estimates and large area coverage in global carbon budget and cycle studies. Additionally, the findings reveal that similar issues may exist in other satellite laser altimetry missions, emphasizing the important impacts of temporal fluctuations in surface and terrain accuracy when utilizing satellite laser altimetry datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
期刊最新文献
Combining readily available population and land cover maps to generate non-residential built-up labels to train Sentinel-2 image segmentation models An intercomparison of national and global land use and land cover products for Fiji The illusion of success: Test set disproportion causes inflated accuracy in remote sensing mapping research Multispectral imaging and terrestrial laser scanning for the detection of drought-induced paraheliotropic leaf movement in soybean DeLA: An extremely faster network with decoupled local aggregation for large scale point cloud learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1