Kai Zhang , Jie Deng , Congying Zhou , Jiangui Liu , Xuan Lv , Ying Wang , Enhong Sun , Yan Liu , Zhanhong Ma , Jiali Shang
{"title":"利用无人机高光谱成像和深度学习,实现基于对象的黄腐病锈病指数定量反演","authors":"Kai Zhang , Jie Deng , Congying Zhou , Jiangui Liu , Xuan Lv , Ying Wang , Enhong Sun , Yan Liu , Zhanhong Ma , Jiali Shang","doi":"10.1016/j.jag.2024.104262","DOIUrl":null,"url":null,"abstract":"<div><div><em>Zanthoxylum</em> rust (ZR) poses a significant threat to <em>Zanthoxylum bungeanum</em> Maxim.(ZBM) production, impacting both the yield and quality. The lack of current research on ZR using unmanned aerial vehicle (UAV) remote sensing poses a challenge to achieving precise management of individual ZBM plant. This study acquired six UAV hyperspectral images to create a ZR inversion dataset . This dataset, to our knowledge, is the first dataset for remote sensing deep learning (DL) of ZR using UAV. To facilitate automated extraction of individual ZBM plant and the quantitative inversion of ZR disease index (DI), we introduced the object-based quantitative inversion framework (OQIF). OQIF achieved high accuracy in recognizing ZBM (average precision at an intersection over union threshold of 0.5 was 90.0 %). Remarkably, OQIF demonstrates outstanding quantitative inversion results for ZR DI (R<sup>2</sup> = 0.90, RMSE = 3.97, n = 8166). For DI < 10, the RMSE was 2.48, showcasing early detection capability. Our research has significant implications for ZBM cultivation and precision management, pioneering object-based quantitative inversion for tree diseases and yield estimation, with potential for early ZR detection.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"135 ","pages":"Article 104262"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using UAV hyperspectral imagery and deep learning for Object-Based quantitative inversion of Zanthoxylum rust disease index\",\"authors\":\"Kai Zhang , Jie Deng , Congying Zhou , Jiangui Liu , Xuan Lv , Ying Wang , Enhong Sun , Yan Liu , Zhanhong Ma , Jiali Shang\",\"doi\":\"10.1016/j.jag.2024.104262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Zanthoxylum</em> rust (ZR) poses a significant threat to <em>Zanthoxylum bungeanum</em> Maxim.(ZBM) production, impacting both the yield and quality. The lack of current research on ZR using unmanned aerial vehicle (UAV) remote sensing poses a challenge to achieving precise management of individual ZBM plant. This study acquired six UAV hyperspectral images to create a ZR inversion dataset . This dataset, to our knowledge, is the first dataset for remote sensing deep learning (DL) of ZR using UAV. To facilitate automated extraction of individual ZBM plant and the quantitative inversion of ZR disease index (DI), we introduced the object-based quantitative inversion framework (OQIF). OQIF achieved high accuracy in recognizing ZBM (average precision at an intersection over union threshold of 0.5 was 90.0 %). Remarkably, OQIF demonstrates outstanding quantitative inversion results for ZR DI (R<sup>2</sup> = 0.90, RMSE = 3.97, n = 8166). For DI < 10, the RMSE was 2.48, showcasing early detection capability. Our research has significant implications for ZBM cultivation and precision management, pioneering object-based quantitative inversion for tree diseases and yield estimation, with potential for early ZR detection.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"135 \",\"pages\":\"Article 104262\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224006186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224006186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Using UAV hyperspectral imagery and deep learning for Object-Based quantitative inversion of Zanthoxylum rust disease index
Zanthoxylum rust (ZR) poses a significant threat to Zanthoxylum bungeanum Maxim.(ZBM) production, impacting both the yield and quality. The lack of current research on ZR using unmanned aerial vehicle (UAV) remote sensing poses a challenge to achieving precise management of individual ZBM plant. This study acquired six UAV hyperspectral images to create a ZR inversion dataset . This dataset, to our knowledge, is the first dataset for remote sensing deep learning (DL) of ZR using UAV. To facilitate automated extraction of individual ZBM plant and the quantitative inversion of ZR disease index (DI), we introduced the object-based quantitative inversion framework (OQIF). OQIF achieved high accuracy in recognizing ZBM (average precision at an intersection over union threshold of 0.5 was 90.0 %). Remarkably, OQIF demonstrates outstanding quantitative inversion results for ZR DI (R2 = 0.90, RMSE = 3.97, n = 8166). For DI < 10, the RMSE was 2.48, showcasing early detection capability. Our research has significant implications for ZBM cultivation and precision management, pioneering object-based quantitative inversion for tree diseases and yield estimation, with potential for early ZR detection.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.