Bingbing Jiang , Jun Liu , Zidong Wang , Chenglong Zhang , Jie Yang , Yadi Wang , Weiguo Sheng , Weiping Ding
{"title":"利用自适应相似性融合与学习进行半监督式多视角特征选择","authors":"Bingbing Jiang , Jun Liu , Zidong Wang , Chenglong Zhang , Jie Yang , Yadi Wang , Weiguo Sheng , Weiping Ding","doi":"10.1016/j.patcog.2024.111159","DOIUrl":null,"url":null,"abstract":"<div><div>Existing multi-view semi-supervised feature selection methods typically need to calculate the inversion of high-order dense matrices, rendering them impractical for large-scale applications. Meanwhile, traditional works construct similarity graphs on different views and directly fuse these graphs from the view level, ignoring the differences among samples in various views and the interplay between graph learning and feature selection. Consequently, both the reliability of graphs and the discrimination of selected features are compromised. To address these issues, we propose a novel multi-view semi-supervised feature selection with Adaptive Similarity Fusion and Learning (ASFL) for large-scale tasks. Specifically, ASFL constructs bipartite graphs for each view and then leverages the relationships between samples and anchors to align anchors and graphs across different views, preserving the complementarity and consistency among views. Moreover, an effective view-to-sample fusion manner is designed to coalesce the aligned graphs while simultaneously exploiting the neighbor structures in projection subspaces to construct the joint graph compatible across views, reducing the adverse effects of noisy features and outliers. By incorporating bipartite graph fusion and learning, label propagation, and <span><math><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow></msub></math></span>-norm multi-view feature selection into a unified framework, ASFL not only avoids the expensive computation in the solution procedures but also enhances the quality of selected features. An effective optimization strategy with fast convergence is developed to solve the objective function, and experimental results validate its efficiency and effectiveness over state-of-the-art methods.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"159 ","pages":"Article 111159"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-supervised multi-view feature selection with adaptive similarity fusion and learning\",\"authors\":\"Bingbing Jiang , Jun Liu , Zidong Wang , Chenglong Zhang , Jie Yang , Yadi Wang , Weiguo Sheng , Weiping Ding\",\"doi\":\"10.1016/j.patcog.2024.111159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Existing multi-view semi-supervised feature selection methods typically need to calculate the inversion of high-order dense matrices, rendering them impractical for large-scale applications. Meanwhile, traditional works construct similarity graphs on different views and directly fuse these graphs from the view level, ignoring the differences among samples in various views and the interplay between graph learning and feature selection. Consequently, both the reliability of graphs and the discrimination of selected features are compromised. To address these issues, we propose a novel multi-view semi-supervised feature selection with Adaptive Similarity Fusion and Learning (ASFL) for large-scale tasks. Specifically, ASFL constructs bipartite graphs for each view and then leverages the relationships between samples and anchors to align anchors and graphs across different views, preserving the complementarity and consistency among views. Moreover, an effective view-to-sample fusion manner is designed to coalesce the aligned graphs while simultaneously exploiting the neighbor structures in projection subspaces to construct the joint graph compatible across views, reducing the adverse effects of noisy features and outliers. By incorporating bipartite graph fusion and learning, label propagation, and <span><math><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow></msub></math></span>-norm multi-view feature selection into a unified framework, ASFL not only avoids the expensive computation in the solution procedures but also enhances the quality of selected features. An effective optimization strategy with fast convergence is developed to solve the objective function, and experimental results validate its efficiency and effectiveness over state-of-the-art methods.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"159 \",\"pages\":\"Article 111159\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320324009105\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324009105","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Semi-supervised multi-view feature selection with adaptive similarity fusion and learning
Existing multi-view semi-supervised feature selection methods typically need to calculate the inversion of high-order dense matrices, rendering them impractical for large-scale applications. Meanwhile, traditional works construct similarity graphs on different views and directly fuse these graphs from the view level, ignoring the differences among samples in various views and the interplay between graph learning and feature selection. Consequently, both the reliability of graphs and the discrimination of selected features are compromised. To address these issues, we propose a novel multi-view semi-supervised feature selection with Adaptive Similarity Fusion and Learning (ASFL) for large-scale tasks. Specifically, ASFL constructs bipartite graphs for each view and then leverages the relationships between samples and anchors to align anchors and graphs across different views, preserving the complementarity and consistency among views. Moreover, an effective view-to-sample fusion manner is designed to coalesce the aligned graphs while simultaneously exploiting the neighbor structures in projection subspaces to construct the joint graph compatible across views, reducing the adverse effects of noisy features and outliers. By incorporating bipartite graph fusion and learning, label propagation, and -norm multi-view feature selection into a unified framework, ASFL not only avoids the expensive computation in the solution procedures but also enhances the quality of selected features. An effective optimization strategy with fast convergence is developed to solve the objective function, and experimental results validate its efficiency and effectiveness over state-of-the-art methods.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.