利用纹理和结构双流生成技术,从单次曝光的 LDR 重建 HDR

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2024-10-31 DOI:10.1016/j.patcog.2024.111127
Yu-Hsiang Chen, Shanq-Jang Ruan
{"title":"利用纹理和结构双流生成技术,从单次曝光的 LDR 重建 HDR","authors":"Yu-Hsiang Chen,&nbsp;Shanq-Jang Ruan","doi":"10.1016/j.patcog.2024.111127","DOIUrl":null,"url":null,"abstract":"<div><div>Reconstructing high dynamic range (HDR) imagery from a single low dynamic range (LDR) photograph presents substantial challenges. The challenges are primarily due to the loss of details and information in regions of underexposure or overexposure due to quantization and saturation inherent to camera sensors. Traditional learning-based approaches often struggle with distinguishing overexposed regions within an object from the background, leading to compromised detail retention in these critical areas. Our methodology focuses on meticulously reconstructing structural and textural details to preserve the integrity of the structural information. We propose a new two-stage model architecture for HDR image reconstruction, including a dual-stream network and a feature fusion stage. The dual-stream network is designed to reconstruct structural and textural details, while the feature fusion stage aims to minimize artifacts by utilizing the reconstructed information. We have demonstrated that our proposed method performs better than other state-of-the-art single-image HDR reconstruction algorithms in various quality metrics.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"159 ","pages":"Article 111127"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HDR reconstruction from a single exposure LDR using texture and structure dual-stream generation\",\"authors\":\"Yu-Hsiang Chen,&nbsp;Shanq-Jang Ruan\",\"doi\":\"10.1016/j.patcog.2024.111127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reconstructing high dynamic range (HDR) imagery from a single low dynamic range (LDR) photograph presents substantial challenges. The challenges are primarily due to the loss of details and information in regions of underexposure or overexposure due to quantization and saturation inherent to camera sensors. Traditional learning-based approaches often struggle with distinguishing overexposed regions within an object from the background, leading to compromised detail retention in these critical areas. Our methodology focuses on meticulously reconstructing structural and textural details to preserve the integrity of the structural information. We propose a new two-stage model architecture for HDR image reconstruction, including a dual-stream network and a feature fusion stage. The dual-stream network is designed to reconstruct structural and textural details, while the feature fusion stage aims to minimize artifacts by utilizing the reconstructed information. We have demonstrated that our proposed method performs better than other state-of-the-art single-image HDR reconstruction algorithms in various quality metrics.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"159 \",\"pages\":\"Article 111127\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320324008781\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008781","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

从单张低动态范围(LDR)照片重建高动态范围(HDR)图像是一项巨大的挑战。这些挑战主要是由于相机传感器固有的量化和饱和度导致曝光不足或曝光过度区域的细节和信息丢失。传统的基于学习的方法往往难以将物体内曝光过度的区域与背景区分开来,导致这些关键区域的细节保留受到影响。我们的方法侧重于精心重建结构和纹理细节,以保持结构信息的完整性。我们为 HDR 图像重建提出了一种新的两阶段模型架构,包括双流网络和特征融合阶段。双流网络旨在重建结构和纹理细节,而特征融合阶段则旨在利用重建的信息最大限度地减少伪影。我们已经证明,我们提出的方法在各种质量指标上都优于其他最先进的单图像 HDR 重建算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HDR reconstruction from a single exposure LDR using texture and structure dual-stream generation
Reconstructing high dynamic range (HDR) imagery from a single low dynamic range (LDR) photograph presents substantial challenges. The challenges are primarily due to the loss of details and information in regions of underexposure or overexposure due to quantization and saturation inherent to camera sensors. Traditional learning-based approaches often struggle with distinguishing overexposed regions within an object from the background, leading to compromised detail retention in these critical areas. Our methodology focuses on meticulously reconstructing structural and textural details to preserve the integrity of the structural information. We propose a new two-stage model architecture for HDR image reconstruction, including a dual-stream network and a feature fusion stage. The dual-stream network is designed to reconstruct structural and textural details, while the feature fusion stage aims to minimize artifacts by utilizing the reconstructed information. We have demonstrated that our proposed method performs better than other state-of-the-art single-image HDR reconstruction algorithms in various quality metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
Learning accurate and enriched features for stereo image super-resolution Semi-supervised multi-view feature selection with adaptive similarity fusion and learning DyConfidMatch: Dynamic thresholding and re-sampling for 3D semi-supervised learning CAST: An innovative framework for Cross-dimensional Attention Structure in Transformers Embedded feature selection for robust probability learning machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1