{"title":"MWVOS:通过可提示基础模型进行无掩码弱监督视频对象分割","authors":"Zhenghao Zhang , Shengfan Zhang , Zuozhuo Dai , Zilong Dong , Siyu Zhu","doi":"10.1016/j.patcog.2024.111100","DOIUrl":null,"url":null,"abstract":"<div><div>The current state-of-the-art techniques for video object segmentation necessitate extensive training on video datasets with mask annotations, thereby constraining their ability to transfer zero-shot learning to new image distributions and tasks. However, recent advancements in foundation models, particularly in the domain of image segmentation, have showcased robust generalization capabilities, introducing a novel prompt-driven paradigm for a variety of downstream segmentation challenges on new data distributions. This study delves into the potential of vision foundation models using diverse prompt strategies and proposes a mask-free approach for unsupervised video object segmentation. To further improve the efficacy of prompt learning in diverse and complex video scenes, we introduce a spatial–temporal decoupled deformable attention mechanism to establish an effective correlation between intra- and inter-frame features. Extensive experiments conducted on the DAVIS2017-unsupervised and YoutubeVIS19&21 and OIVS datasets demonstrate the superior performance of the proposed approach without mask supervision when compared to existing mask-supervised methods, as well as its capacity to generalize to weakly-annotated video datasets.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"159 ","pages":"Article 111100"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MWVOS: Mask-Free Weakly Supervised Video Object Segmentation via promptable foundation model\",\"authors\":\"Zhenghao Zhang , Shengfan Zhang , Zuozhuo Dai , Zilong Dong , Siyu Zhu\",\"doi\":\"10.1016/j.patcog.2024.111100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The current state-of-the-art techniques for video object segmentation necessitate extensive training on video datasets with mask annotations, thereby constraining their ability to transfer zero-shot learning to new image distributions and tasks. However, recent advancements in foundation models, particularly in the domain of image segmentation, have showcased robust generalization capabilities, introducing a novel prompt-driven paradigm for a variety of downstream segmentation challenges on new data distributions. This study delves into the potential of vision foundation models using diverse prompt strategies and proposes a mask-free approach for unsupervised video object segmentation. To further improve the efficacy of prompt learning in diverse and complex video scenes, we introduce a spatial–temporal decoupled deformable attention mechanism to establish an effective correlation between intra- and inter-frame features. Extensive experiments conducted on the DAVIS2017-unsupervised and YoutubeVIS19&21 and OIVS datasets demonstrate the superior performance of the proposed approach without mask supervision when compared to existing mask-supervised methods, as well as its capacity to generalize to weakly-annotated video datasets.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"159 \",\"pages\":\"Article 111100\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320324008513\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008513","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
MWVOS: Mask-Free Weakly Supervised Video Object Segmentation via promptable foundation model
The current state-of-the-art techniques for video object segmentation necessitate extensive training on video datasets with mask annotations, thereby constraining their ability to transfer zero-shot learning to new image distributions and tasks. However, recent advancements in foundation models, particularly in the domain of image segmentation, have showcased robust generalization capabilities, introducing a novel prompt-driven paradigm for a variety of downstream segmentation challenges on new data distributions. This study delves into the potential of vision foundation models using diverse prompt strategies and proposes a mask-free approach for unsupervised video object segmentation. To further improve the efficacy of prompt learning in diverse and complex video scenes, we introduce a spatial–temporal decoupled deformable attention mechanism to establish an effective correlation between intra- and inter-frame features. Extensive experiments conducted on the DAVIS2017-unsupervised and YoutubeVIS19&21 and OIVS datasets demonstrate the superior performance of the proposed approach without mask supervision when compared to existing mask-supervised methods, as well as its capacity to generalize to weakly-annotated video datasets.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.