Dongzhou Gu , Kaihua Huang , Shiwei Ma , Jiang Liu
{"title":"HOI-V:基于视频多特征融合的单阶段人-物互动检测","authors":"Dongzhou Gu , Kaihua Huang , Shiwei Ma , Jiang Liu","doi":"10.1016/j.image.2024.117224","DOIUrl":null,"url":null,"abstract":"<div><div>Effective detection of Human-Object Interaction (HOI) is important for machine understanding of real-world scenarios. Nowadays, image-based HOI detection has been abundantly investigated, and recent one-stage methods strike a balance between accuracy and efficiency. However, it is difficult to predict temporal-aware interaction actions from static images since limited temporal context information is introduced. Meanwhile, due to the lack of early large-scale video HOI datasets and the high computational cost of spatial-temporal HOI model training, recent exploratory studies mostly follow a two-stage paradigm, but independent object detection and interaction recognition still suffer from computational redundancy and independent optimization. Therefore, inspired by the one-stage interaction point detection framework, a one-stage spatial-temporal HOI detection baseline is proposed in this paper, in which the short-term local motion features and long-term temporal context features are obtained by the proposed temporal differential excitation module (TDEM) and DLA-TSM backbone. Complementary visual features between multiple clips are then extracted by multi-feature fusion and fed into the parallel detection branches. Finally, a video dataset containing only actions with reduced data size (HOI-V) is constructed to motivate further research on end-to-end video HOI detection. Extensive experiments are also conducted to verify the validity of our proposed baseline.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"130 ","pages":"Article 117224"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HOI-V: One-stage human-object interaction detection based on multi-feature fusion in videos\",\"authors\":\"Dongzhou Gu , Kaihua Huang , Shiwei Ma , Jiang Liu\",\"doi\":\"10.1016/j.image.2024.117224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective detection of Human-Object Interaction (HOI) is important for machine understanding of real-world scenarios. Nowadays, image-based HOI detection has been abundantly investigated, and recent one-stage methods strike a balance between accuracy and efficiency. However, it is difficult to predict temporal-aware interaction actions from static images since limited temporal context information is introduced. Meanwhile, due to the lack of early large-scale video HOI datasets and the high computational cost of spatial-temporal HOI model training, recent exploratory studies mostly follow a two-stage paradigm, but independent object detection and interaction recognition still suffer from computational redundancy and independent optimization. Therefore, inspired by the one-stage interaction point detection framework, a one-stage spatial-temporal HOI detection baseline is proposed in this paper, in which the short-term local motion features and long-term temporal context features are obtained by the proposed temporal differential excitation module (TDEM) and DLA-TSM backbone. Complementary visual features between multiple clips are then extracted by multi-feature fusion and fed into the parallel detection branches. Finally, a video dataset containing only actions with reduced data size (HOI-V) is constructed to motivate further research on end-to-end video HOI detection. Extensive experiments are also conducted to verify the validity of our proposed baseline.</div></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"130 \",\"pages\":\"Article 117224\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524001255\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524001255","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
HOI-V: One-stage human-object interaction detection based on multi-feature fusion in videos
Effective detection of Human-Object Interaction (HOI) is important for machine understanding of real-world scenarios. Nowadays, image-based HOI detection has been abundantly investigated, and recent one-stage methods strike a balance between accuracy and efficiency. However, it is difficult to predict temporal-aware interaction actions from static images since limited temporal context information is introduced. Meanwhile, due to the lack of early large-scale video HOI datasets and the high computational cost of spatial-temporal HOI model training, recent exploratory studies mostly follow a two-stage paradigm, but independent object detection and interaction recognition still suffer from computational redundancy and independent optimization. Therefore, inspired by the one-stage interaction point detection framework, a one-stage spatial-temporal HOI detection baseline is proposed in this paper, in which the short-term local motion features and long-term temporal context features are obtained by the proposed temporal differential excitation module (TDEM) and DLA-TSM backbone. Complementary visual features between multiple clips are then extracted by multi-feature fusion and fed into the parallel detection branches. Finally, a video dataset containing only actions with reduced data size (HOI-V) is constructed to motivate further research on end-to-end video HOI detection. Extensive experiments are also conducted to verify the validity of our proposed baseline.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.