铁磁记忆单元中的异常开关模式

IF 2.5 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Magnetism and Magnetic Materials Pub Date : 2024-11-02 DOI:10.1016/j.jmmm.2024.172614
Zhuo Xu , Zhengping Yuan , Xue Zhang , Zhengde Xu , Yixiao Qiao , Yumeng Yang , Zhifeng Zhu
{"title":"铁磁记忆单元中的异常开关模式","authors":"Zhuo Xu ,&nbsp;Zhengping Yuan ,&nbsp;Xue Zhang ,&nbsp;Zhengde Xu ,&nbsp;Yixiao Qiao ,&nbsp;Yumeng Yang ,&nbsp;Zhifeng Zhu","doi":"10.1016/j.jmmm.2024.172614","DOIUrl":null,"url":null,"abstract":"<div><div>Replacing the ferromagnet with ferrimagnet (FiM) in the magnetic tunnel junction (MTJ) allows faster magnetization switching in picoseconds. The operation of a memory cell that consists of the MTJ and a transistor requires reversable magnetization switching. When a constant voltage is applied, we find that the spin-transfer torque can only switch the FiM-MTJ from parallel to antiparallel state. This stems from the small switching window of FiM and the dynamic resistance variation during the magnetization switching. We find the resulting current variation can be suppressed by reducing the magnetoresistance ratio. Furthermore, we demonstrate that the switching window can be expanded by adjusting the amount of Gd in FiM. We predict that the polarity of both switching current (<em>J</em><sub>c,switch</sub>) and oscillation current (<em>J</em><sub>c,osc</sub>) reverses at the angular momentum compensation point but not the magnetization compensation point. This anomalous dynamic behavior is attributed to the different physical nature of magnetization switching and oscillation in FiM, which must be considered when designing FiM-based MRAM.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"611 ","pages":"Article 172614"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomalous switching pattern in the ferrimagnetic memory cell\",\"authors\":\"Zhuo Xu ,&nbsp;Zhengping Yuan ,&nbsp;Xue Zhang ,&nbsp;Zhengde Xu ,&nbsp;Yixiao Qiao ,&nbsp;Yumeng Yang ,&nbsp;Zhifeng Zhu\",\"doi\":\"10.1016/j.jmmm.2024.172614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Replacing the ferromagnet with ferrimagnet (FiM) in the magnetic tunnel junction (MTJ) allows faster magnetization switching in picoseconds. The operation of a memory cell that consists of the MTJ and a transistor requires reversable magnetization switching. When a constant voltage is applied, we find that the spin-transfer torque can only switch the FiM-MTJ from parallel to antiparallel state. This stems from the small switching window of FiM and the dynamic resistance variation during the magnetization switching. We find the resulting current variation can be suppressed by reducing the magnetoresistance ratio. Furthermore, we demonstrate that the switching window can be expanded by adjusting the amount of Gd in FiM. We predict that the polarity of both switching current (<em>J</em><sub>c,switch</sub>) and oscillation current (<em>J</em><sub>c,osc</sub>) reverses at the angular momentum compensation point but not the magnetization compensation point. This anomalous dynamic behavior is attributed to the different physical nature of magnetization switching and oscillation in FiM, which must be considered when designing FiM-based MRAM.</div></div>\",\"PeriodicalId\":366,\"journal\":{\"name\":\"Journal of Magnetism and Magnetic Materials\",\"volume\":\"611 \",\"pages\":\"Article 172614\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetism and Magnetic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304885324009053\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885324009053","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在磁隧道结(MTJ)中用铁磁体(FiM)取代铁磁体,可以在皮秒级的时间内实现更快的磁化切换。由 MTJ 和晶体管组成的存储单元的运行需要可逆的磁化切换。当施加恒定电压时,我们发现自旋转移力矩只能将 FiM-MTJ 从平行状态切换到反平行状态。这是因为 FiM 的开关窗口较小,而且在磁化切换过程中存在动态电阻变化。我们发现可以通过降低磁阻比来抑制由此产生的电流变化。此外,我们还证明可以通过调整 FiM 中的钆含量来扩大开关窗口。我们预测开关电流(Jc,switch)和振荡电流(Jc,osc)的极性在角动量补偿点会反转,但在磁化补偿点不会。这种反常的动态行为归因于 FiM 中磁化开关和振荡的不同物理特性,在设计基于 FiM 的 MRAM 时必须考虑到这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anomalous switching pattern in the ferrimagnetic memory cell
Replacing the ferromagnet with ferrimagnet (FiM) in the magnetic tunnel junction (MTJ) allows faster magnetization switching in picoseconds. The operation of a memory cell that consists of the MTJ and a transistor requires reversable magnetization switching. When a constant voltage is applied, we find that the spin-transfer torque can only switch the FiM-MTJ from parallel to antiparallel state. This stems from the small switching window of FiM and the dynamic resistance variation during the magnetization switching. We find the resulting current variation can be suppressed by reducing the magnetoresistance ratio. Furthermore, we demonstrate that the switching window can be expanded by adjusting the amount of Gd in FiM. We predict that the polarity of both switching current (Jc,switch) and oscillation current (Jc,osc) reverses at the angular momentum compensation point but not the magnetization compensation point. This anomalous dynamic behavior is attributed to the different physical nature of magnetization switching and oscillation in FiM, which must be considered when designing FiM-based MRAM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnetism and Magnetic Materials
Journal of Magnetism and Magnetic Materials 物理-材料科学:综合
CiteScore
5.30
自引率
11.10%
发文量
1149
审稿时长
59 days
期刊介绍: The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public. Main Categories: Full-length articles: Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged. In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications. The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications. The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism. Review articles: Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.
期刊最新文献
Effect of precursor state on the formation of triphase (SmCo7 + SmCo3)/Fe(Co) magnets Editorial Board A magnetically controlled bio-inspired cobweb soft robot based on structural topology optimization Textured CoZn-18H hexaferrite with enhanced Snoek’s product and suppressed magnetic loss Influence of atomic substitution on the structural stability and half-metallicity of Fe2-xCrxCoSi (x = 0 to 1) alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1