公共交通网络空间可达性规范的模型检查

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Simulation Modelling Practice and Theory Pub Date : 2024-11-07 DOI:10.1016/j.simpat.2024.103033
Jun Niu , Jia Wang
{"title":"公共交通网络空间可达性规范的模型检查","authors":"Jun Niu ,&nbsp;Jia Wang","doi":"10.1016/j.simpat.2024.103033","DOIUrl":null,"url":null,"abstract":"<div><div>Well-designed spatial configurations of public transport stops and routes in big cities contribute to enhancing daily travel services for citizens, effectively mitigating traffic congestion, and addressing other pertinent challenges. When examining spatial layouts of public transport networks (PTNs), various reachability demands between stops or urban Points of Interest (POIs) are crucial issues should be firstly taken into account. Existing methods to investigate spatial reachability properties of PTNs generally need to construct some evaluation functions, or survey reachability metrics through some network analysis techniques. These methods are often impractical, as the functional relations always cannot be accurately defined, or some global network metrics cannot provide explicit evidences for PTN layout planning or optimization.</div><div>In this paper, we introduce spatial model checking techniques to the formal verification of the reachability specifications of PTN to guarantee the rationality of PTN layout. First, we extend closure space structure by incorporating attribute labeling functions and logical propositions for public transport stops and routes to develop a formal spatial verification model for PTN spatial layout. Second, we propose several novel reachability operators based on the logical operators of the Spatial Logic for Closure Space (SLCS) to facilitate the logical characterization of reachability specifications. Third, we perform the verification of the transformed reachability formulas by the spatial model checker topochecker. Examples demonstrate the effectiveness of our approach and indicate that it can perform automatic, descriptive and comprehensible verification of the reachability properties PTN layouts.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"138 ","pages":"Article 103033"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model checking spatial reachability specifications of public transport networks\",\"authors\":\"Jun Niu ,&nbsp;Jia Wang\",\"doi\":\"10.1016/j.simpat.2024.103033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Well-designed spatial configurations of public transport stops and routes in big cities contribute to enhancing daily travel services for citizens, effectively mitigating traffic congestion, and addressing other pertinent challenges. When examining spatial layouts of public transport networks (PTNs), various reachability demands between stops or urban Points of Interest (POIs) are crucial issues should be firstly taken into account. Existing methods to investigate spatial reachability properties of PTNs generally need to construct some evaluation functions, or survey reachability metrics through some network analysis techniques. These methods are often impractical, as the functional relations always cannot be accurately defined, or some global network metrics cannot provide explicit evidences for PTN layout planning or optimization.</div><div>In this paper, we introduce spatial model checking techniques to the formal verification of the reachability specifications of PTN to guarantee the rationality of PTN layout. First, we extend closure space structure by incorporating attribute labeling functions and logical propositions for public transport stops and routes to develop a formal spatial verification model for PTN spatial layout. Second, we propose several novel reachability operators based on the logical operators of the Spatial Logic for Closure Space (SLCS) to facilitate the logical characterization of reachability specifications. Third, we perform the verification of the transformed reachability formulas by the spatial model checker topochecker. Examples demonstrate the effectiveness of our approach and indicate that it can perform automatic, descriptive and comprehensible verification of the reachability properties PTN layouts.</div></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":\"138 \",\"pages\":\"Article 103033\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X24001473\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24001473","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

设计合理的大城市公共交通站点和线路空间布局有助于提高市民的日常出行服务,有效缓解交通拥堵,并应对其他相关挑战。在研究公共交通网络(PTN)的空间布局时,应首先考虑站点或城市兴趣点(POI)之间的各种可达性需求。现有研究公共交通网络空间可达性属性的方法一般需要构建一些评价函数,或通过一些网络分析技术来调查可达性指标。本文将空间模型检查技术引入到 PTN可达性规范的形式验证中,以保证 PTN 布局的合理性。首先,我们扩展了闭包空间结构,加入了公共交通站点和线路的属性标注函数和逻辑命题,从而建立了公共交通网络空间布局的形式化空间验证模型。其次,我们在闭合空间空间逻辑(SLCS)逻辑算子的基础上提出了几种新型可达性算子,以促进可达性规范的逻辑表征。第三,我们通过空间模型检查器 topochecker 对转换后的可达性公式进行验证。示例证明了我们方法的有效性,并表明它可以自动、描述性和可理解地验证 PTN 布局的可达性属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model checking spatial reachability specifications of public transport networks
Well-designed spatial configurations of public transport stops and routes in big cities contribute to enhancing daily travel services for citizens, effectively mitigating traffic congestion, and addressing other pertinent challenges. When examining spatial layouts of public transport networks (PTNs), various reachability demands between stops or urban Points of Interest (POIs) are crucial issues should be firstly taken into account. Existing methods to investigate spatial reachability properties of PTNs generally need to construct some evaluation functions, or survey reachability metrics through some network analysis techniques. These methods are often impractical, as the functional relations always cannot be accurately defined, or some global network metrics cannot provide explicit evidences for PTN layout planning or optimization.
In this paper, we introduce spatial model checking techniques to the formal verification of the reachability specifications of PTN to guarantee the rationality of PTN layout. First, we extend closure space structure by incorporating attribute labeling functions and logical propositions for public transport stops and routes to develop a formal spatial verification model for PTN spatial layout. Second, we propose several novel reachability operators based on the logical operators of the Spatial Logic for Closure Space (SLCS) to facilitate the logical characterization of reachability specifications. Third, we perform the verification of the transformed reachability formulas by the spatial model checker topochecker. Examples demonstrate the effectiveness of our approach and indicate that it can perform automatic, descriptive and comprehensible verification of the reachability properties PTN layouts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Simulation Modelling Practice and Theory
Simulation Modelling Practice and Theory 工程技术-计算机:跨学科应用
CiteScore
9.80
自引率
4.80%
发文量
142
审稿时长
21 days
期刊介绍: The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling. The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas. Paper submission is solicited on: • theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.; • methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.; • simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.; • distributed and real-time simulation, simulation interoperability; • tools for high performance computing simulation, including dedicated architectures and parallel computing.
期刊最新文献
Incentive-driven computation offloading and resource pricing strategy in vehicular edge computing assisted with idle mobile vehicles Simulation modeling of super-large ships traffic: Insights from Ningbo-Zhoushan Port for coastal port management An algorithm for processing block diagram models of dynamical systems and an open-source visual-programming simulation tool Survey of CPU and memory simulators in computer architecture: A comprehensive analysis including compiler integration and emerging technology applications VM consolidation steps in cloud computing: A perspective review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1