利用 PIX2PIX GAN 图像转换从卫星重力观测中生成陆地重力异常点

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2024-11-06 DOI:10.1016/j.acags.2024.100205
Bisrat Teshome Weldemikael , Girma Woldetinsae , Girma Neshir
{"title":"利用 PIX2PIX GAN 图像转换从卫星重力观测中生成陆地重力异常点","authors":"Bisrat Teshome Weldemikael ,&nbsp;Girma Woldetinsae ,&nbsp;Girma Neshir","doi":"10.1016/j.acags.2024.100205","DOIUrl":null,"url":null,"abstract":"<div><div>Generative Adversarial Networks (GANs), specifically the Pix2Pix GAN, are used to effectively map gravity anomalies from satellite to ground, and adapt the Pix2Pix GAN model for large-scale data transformation. The impact of varying patch sizes on model performance is investigated using key metrics to ensure improved accuracy in gravity anomaly mapping. The model used 2728 satellite, and 2728 ground Bouguer gravity anomaly images from northern and northeast part of Ethiopia. 5456 images were used for training and 552 for testing. The findings indicate that Intermediate patch sizes, particularly 70 x 70 pixels, significantly enhanced model accuracy by capturing global features and contextual information. Additionally, models incorporating L2 loss with LcGAN demonstrated superior performance across qualitative metrics compared to those with L1 loss. The study will contribute to improve geophysical exploration by providing an alternative method that generates more accurate gravity maps, thereby enhancing the precision of geological models and related applications.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"24 ","pages":"Article 100205"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation\",\"authors\":\"Bisrat Teshome Weldemikael ,&nbsp;Girma Woldetinsae ,&nbsp;Girma Neshir\",\"doi\":\"10.1016/j.acags.2024.100205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Generative Adversarial Networks (GANs), specifically the Pix2Pix GAN, are used to effectively map gravity anomalies from satellite to ground, and adapt the Pix2Pix GAN model for large-scale data transformation. The impact of varying patch sizes on model performance is investigated using key metrics to ensure improved accuracy in gravity anomaly mapping. The model used 2728 satellite, and 2728 ground Bouguer gravity anomaly images from northern and northeast part of Ethiopia. 5456 images were used for training and 552 for testing. The findings indicate that Intermediate patch sizes, particularly 70 x 70 pixels, significantly enhanced model accuracy by capturing global features and contextual information. Additionally, models incorporating L2 loss with LcGAN demonstrated superior performance across qualitative metrics compared to those with L1 loss. The study will contribute to improve geophysical exploration by providing an alternative method that generates more accurate gravity maps, thereby enhancing the precision of geological models and related applications.</div></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"24 \",\"pages\":\"Article 100205\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590197424000521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

生成对抗网络(GAN),特别是 Pix2Pix GAN,用于有效绘制从卫星到地面的重力异常图,并使 Pix2Pix GAN 模型适用于大规模数据转换。利用关键指标研究了不同斑块大小对模型性能的影响,以确保提高重力异常绘图的准确性。该模型使用了埃塞俄比亚北部和东北部的 2728 幅卫星图像和 2728 幅地面布格重力异常图像。5456 幅图像用于训练,552 幅图像用于测试。研究结果表明,中间补丁大小,尤其是 70 x 70 像素,通过捕捉全局特征和上下文信息,显著提高了模型的准确性。此外,与采用 L1 损失的模型相比,采用 L2 损失和 LcGAN 的模型在质量指标方面表现出更优越的性能。这项研究提供了一种可生成更精确重力地图的替代方法,从而提高了地质模型和相关应用的精度,有助于改善地球物理勘探。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation
Generative Adversarial Networks (GANs), specifically the Pix2Pix GAN, are used to effectively map gravity anomalies from satellite to ground, and adapt the Pix2Pix GAN model for large-scale data transformation. The impact of varying patch sizes on model performance is investigated using key metrics to ensure improved accuracy in gravity anomaly mapping. The model used 2728 satellite, and 2728 ground Bouguer gravity anomaly images from northern and northeast part of Ethiopia. 5456 images were used for training and 552 for testing. The findings indicate that Intermediate patch sizes, particularly 70 x 70 pixels, significantly enhanced model accuracy by capturing global features and contextual information. Additionally, models incorporating L2 loss with LcGAN demonstrated superior performance across qualitative metrics compared to those with L1 loss. The study will contribute to improve geophysical exploration by providing an alternative method that generates more accurate gravity maps, thereby enhancing the precision of geological models and related applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1