Anton Glazkov , Miguel Fosas de Pando , Peter J. Schmid , Li He
{"title":"用于气动声学和基于邻接的灵敏度计算的滑动平面形式主义","authors":"Anton Glazkov , Miguel Fosas de Pando , Peter J. Schmid , Li He","doi":"10.1016/j.cpc.2024.109421","DOIUrl":null,"url":null,"abstract":"<div><div>This paper demonstrates a methodology for time-domain and time-accurate nonlinear, direct and adjoint simulations of unsteady flows and aeroacoustics for multi-component systems in relative motion. Here, the principal effort is directed towards mitigating the problem of distortion and contamination of the <em>adjoint</em> field at the moving interface, through a computationally lightweight, high-order sliding plane approach for which the adjoint equivalent is simple to obtain. This effort requires an attentive treatment of the interface conditions that surpasses the requirements of the more common forward (primary) problem. Sensitivity of a given quantity of interest from a time-varying flow with respect to a large number of parameters is then obtained through the adjoint operator, which is evaluated using nonlinear-adjoint looping. This technique is implemented using checkpointing and the PETSc <span>TSAdjoint</span> library and, after validation, applications including a rotor–stator interaction problem are presented.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"307 ","pages":"Article 109421"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sliding plane formalism for aeroacoustic and adjoint-based sensitivity calculations\",\"authors\":\"Anton Glazkov , Miguel Fosas de Pando , Peter J. Schmid , Li He\",\"doi\":\"10.1016/j.cpc.2024.109421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper demonstrates a methodology for time-domain and time-accurate nonlinear, direct and adjoint simulations of unsteady flows and aeroacoustics for multi-component systems in relative motion. Here, the principal effort is directed towards mitigating the problem of distortion and contamination of the <em>adjoint</em> field at the moving interface, through a computationally lightweight, high-order sliding plane approach for which the adjoint equivalent is simple to obtain. This effort requires an attentive treatment of the interface conditions that surpasses the requirements of the more common forward (primary) problem. Sensitivity of a given quantity of interest from a time-varying flow with respect to a large number of parameters is then obtained through the adjoint operator, which is evaluated using nonlinear-adjoint looping. This technique is implemented using checkpointing and the PETSc <span>TSAdjoint</span> library and, after validation, applications including a rotor–stator interaction problem are presented.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"307 \",\"pages\":\"Article 109421\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524003448\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524003448","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Sliding plane formalism for aeroacoustic and adjoint-based sensitivity calculations
This paper demonstrates a methodology for time-domain and time-accurate nonlinear, direct and adjoint simulations of unsteady flows and aeroacoustics for multi-component systems in relative motion. Here, the principal effort is directed towards mitigating the problem of distortion and contamination of the adjoint field at the moving interface, through a computationally lightweight, high-order sliding plane approach for which the adjoint equivalent is simple to obtain. This effort requires an attentive treatment of the interface conditions that surpasses the requirements of the more common forward (primary) problem. Sensitivity of a given quantity of interest from a time-varying flow with respect to a large number of parameters is then obtained through the adjoint operator, which is evaluated using nonlinear-adjoint looping. This technique is implemented using checkpointing and the PETSc TSAdjoint library and, after validation, applications including a rotor–stator interaction problem are presented.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.