Mohammad Ghazizadeh , Alexander Rey , Abolghasem Pilechi , Richard Burcher , Simon St-Onge Drouin , Philippe Lamontagne
{"title":"用于模拟内陆和沿海水生环境中微塑料的高性能射线追踪粒子跟踪模型","authors":"Mohammad Ghazizadeh , Alexander Rey , Abolghasem Pilechi , Richard Burcher , Simon St-Onge Drouin , Philippe Lamontagne","doi":"10.1016/j.cpc.2024.109423","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we present a high-performance Particle Tracking Model (PTM) designed for simulating any type of particles, with a focus on microplastics. The PTM is efficient compared to existing models, parallelized, and utilizes a ray tracing algorithm incorporating both ray reflection and ray refraction in order to traverse particles as well as find the location of each particle over three-dimensional unstructured grids. Various numerical corrections are implemented in the model to address computational round-off errors and discontinuities in the water surface level of the input hydrodynamic models. To increase the accuracy of the model, partially reflective boundary conditions are imposed as well as the capability to simulate microplastics beaching and washout in very shallow areas or dry computational cells. Several tests are conducted to study the performance, scalability, and accuracy of the model. The proposed model is tested with over 3.88 billion double-precision particles on three-dimensional computational grids with up to approximately one million cells. The tests show that the ray tracing approach is efficient, achieves over 17× faster runtime, and offers greater accuracy compared to using an auxiliary grid for particle location finding. For larger timesteps, the ray tracing PTM with refraction shows improved accuracy compared to the ray tracing PTM without refraction. The model's capabilities are tested in a real-world case study over the Saguenay Fjord, Quebec, Canada. The model is utilized to reproduce the paths of five surface drifters. A second numerical test is conducted in the Fjord and high particle concentration areas are identified.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"307 ","pages":"Article 109423"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-performance ray tracing particle tracking model for the simulation of microplastics in inland and coastal aquatic environments\",\"authors\":\"Mohammad Ghazizadeh , Alexander Rey , Abolghasem Pilechi , Richard Burcher , Simon St-Onge Drouin , Philippe Lamontagne\",\"doi\":\"10.1016/j.cpc.2024.109423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we present a high-performance Particle Tracking Model (PTM) designed for simulating any type of particles, with a focus on microplastics. The PTM is efficient compared to existing models, parallelized, and utilizes a ray tracing algorithm incorporating both ray reflection and ray refraction in order to traverse particles as well as find the location of each particle over three-dimensional unstructured grids. Various numerical corrections are implemented in the model to address computational round-off errors and discontinuities in the water surface level of the input hydrodynamic models. To increase the accuracy of the model, partially reflective boundary conditions are imposed as well as the capability to simulate microplastics beaching and washout in very shallow areas or dry computational cells. Several tests are conducted to study the performance, scalability, and accuracy of the model. The proposed model is tested with over 3.88 billion double-precision particles on three-dimensional computational grids with up to approximately one million cells. The tests show that the ray tracing approach is efficient, achieves over 17× faster runtime, and offers greater accuracy compared to using an auxiliary grid for particle location finding. For larger timesteps, the ray tracing PTM with refraction shows improved accuracy compared to the ray tracing PTM without refraction. The model's capabilities are tested in a real-world case study over the Saguenay Fjord, Quebec, Canada. The model is utilized to reproduce the paths of five surface drifters. A second numerical test is conducted in the Fjord and high particle concentration areas are identified.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"307 \",\"pages\":\"Article 109423\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524003461\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524003461","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A high-performance ray tracing particle tracking model for the simulation of microplastics in inland and coastal aquatic environments
In this study, we present a high-performance Particle Tracking Model (PTM) designed for simulating any type of particles, with a focus on microplastics. The PTM is efficient compared to existing models, parallelized, and utilizes a ray tracing algorithm incorporating both ray reflection and ray refraction in order to traverse particles as well as find the location of each particle over three-dimensional unstructured grids. Various numerical corrections are implemented in the model to address computational round-off errors and discontinuities in the water surface level of the input hydrodynamic models. To increase the accuracy of the model, partially reflective boundary conditions are imposed as well as the capability to simulate microplastics beaching and washout in very shallow areas or dry computational cells. Several tests are conducted to study the performance, scalability, and accuracy of the model. The proposed model is tested with over 3.88 billion double-precision particles on three-dimensional computational grids with up to approximately one million cells. The tests show that the ray tracing approach is efficient, achieves over 17× faster runtime, and offers greater accuracy compared to using an auxiliary grid for particle location finding. For larger timesteps, the ray tracing PTM with refraction shows improved accuracy compared to the ray tracing PTM without refraction. The model's capabilities are tested in a real-world case study over the Saguenay Fjord, Quebec, Canada. The model is utilized to reproduce the paths of five surface drifters. A second numerical test is conducted in the Fjord and high particle concentration areas are identified.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.