M. Shoji , G. Kawamura , R. Smirnov , J. Romazanov , A. Kirschner , Y. Tanaka , S. Masuzaki , T. Kawate , F. Nespoli , R. Lunsford , E.P. Gilson , S. Brezinsek , N.A. Pablant
{"title":"大型螺旋装置中硼粉末注入实验的全副弦杂质输运模拟","authors":"M. Shoji , G. Kawamura , R. Smirnov , J. Romazanov , A. Kirschner , Y. Tanaka , S. Masuzaki , T. Kawate , F. Nespoli , R. Lunsford , E.P. Gilson , S. Brezinsek , N.A. Pablant","doi":"10.1016/j.nme.2024.101803","DOIUrl":null,"url":null,"abstract":"<div><div>The toroidal distribution of boron deposition on plasma-facing components (PFCs) in boron powder injection using an impurity power dropper (IPD) was investigated by full-torus simulation and observations in a systematic plasma density-scan experiment. The images of the ablation of dropped boron powders observed with a visible CCD camera were consistently explained by the simulations of the ablation positions of the boron powders considering the size distribution. Simulations assuming full-torus boron deposition on the PFCs did not reproduce the observed intensity profile of boron emission lines for higher plasma densities. It indicated that the density of boron deposited on PFCs installed toroidally far from the IPD was low for higher plasma densities due to the change in the ablation positions of the boron powders toward the outboard side. The experimental results verified the previous full-torus simulation of the toroidal distribution of the boron deposition in both lower and higher plasma densities.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"41 ","pages":"Article 101803"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-torus impurity transport simulation in boron powder injection experiments in the Large Helical Device\",\"authors\":\"M. Shoji , G. Kawamura , R. Smirnov , J. Romazanov , A. Kirschner , Y. Tanaka , S. Masuzaki , T. Kawate , F. Nespoli , R. Lunsford , E.P. Gilson , S. Brezinsek , N.A. Pablant\",\"doi\":\"10.1016/j.nme.2024.101803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The toroidal distribution of boron deposition on plasma-facing components (PFCs) in boron powder injection using an impurity power dropper (IPD) was investigated by full-torus simulation and observations in a systematic plasma density-scan experiment. The images of the ablation of dropped boron powders observed with a visible CCD camera were consistently explained by the simulations of the ablation positions of the boron powders considering the size distribution. Simulations assuming full-torus boron deposition on the PFCs did not reproduce the observed intensity profile of boron emission lines for higher plasma densities. It indicated that the density of boron deposited on PFCs installed toroidally far from the IPD was low for higher plasma densities due to the change in the ablation positions of the boron powders toward the outboard side. The experimental results verified the previous full-torus simulation of the toroidal distribution of the boron deposition in both lower and higher plasma densities.</div></div>\",\"PeriodicalId\":56004,\"journal\":{\"name\":\"Nuclear Materials and Energy\",\"volume\":\"41 \",\"pages\":\"Article 101803\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Materials and Energy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352179124002266\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179124002266","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Full-torus impurity transport simulation in boron powder injection experiments in the Large Helical Device
The toroidal distribution of boron deposition on plasma-facing components (PFCs) in boron powder injection using an impurity power dropper (IPD) was investigated by full-torus simulation and observations in a systematic plasma density-scan experiment. The images of the ablation of dropped boron powders observed with a visible CCD camera were consistently explained by the simulations of the ablation positions of the boron powders considering the size distribution. Simulations assuming full-torus boron deposition on the PFCs did not reproduce the observed intensity profile of boron emission lines for higher plasma densities. It indicated that the density of boron deposited on PFCs installed toroidally far from the IPD was low for higher plasma densities due to the change in the ablation positions of the boron powders toward the outboard side. The experimental results verified the previous full-torus simulation of the toroidal distribution of the boron deposition in both lower and higher plasma densities.
期刊介绍:
The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.