利用 D2 分子带发射测量电子密度

IF 2.3 2区 物理与天体物理 Q1 NUCLEAR SCIENCE & TECHNOLOGY Nuclear Materials and Energy Pub Date : 2024-11-06 DOI:10.1016/j.nme.2024.101796
D. Nishijima , M.J. Baldwin , F. Chang , D. Hwangbo , G.R. Tynan
{"title":"利用 D2 分子带发射测量电子密度","authors":"D. Nishijima ,&nbsp;M.J. Baldwin ,&nbsp;F. Chang ,&nbsp;D. Hwangbo ,&nbsp;G.R. Tynan","doi":"10.1016/j.nme.2024.101796","DOIUrl":null,"url":null,"abstract":"<div><div>D<sub>2</sub> molecular band emission observed at a wavelength range of <span><math><mrow><mi>λ</mi><mo>∼</mo><mn>557</mn><mo>−</mo><mn>643</mn><mspace></mspace><mi>nm</mi></mrow></math></span> is utilized to measure electron density, <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span>, in D plasmas of the PISCES-A and PISCES-RF linear plasma devices. The D<sub>2</sub> band is divided at <span><math><mrow><mi>λ</mi><mo>=</mo><mn>593</mn><mspace></mspace><mi>nm</mi></mrow></math></span> to make an intensity ratio, D<span><math><msub><mrow></mrow><mrow><mi>2L</mi></mrow></msub></math></span> (<span><math><mrow><mo>∼</mo><mn>557</mn></mrow></math></span>–<span><math><mrow><mn>593</mn><mspace></mspace><mi>nm</mi></mrow></math></span>)/D<span><math><msub><mrow></mrow><mrow><mi>2R</mi></mrow></msub></math></span> (<span><math><mrow><mo>∼</mo><mn>593</mn></mrow></math></span>–<span><math><mrow><mn>643</mn><mspace></mspace><mi>nm</mi></mrow></math></span>), where D<span><math><msub><mrow></mrow><mrow><mi>2L</mi></mrow></msub></math></span> consists predominantly of the <span><math><mrow><mi>g</mi><msup><mrow><mspace></mspace></mrow><mrow><mn>3</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mspace></mspace><mn>3</mn><mi>d</mi><mi>σ</mi></mrow></math></span>, <span><math><mrow><mi>h</mi><msup><mrow><mspace></mspace></mrow><mrow><mn>3</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mspace></mspace><mn>3</mn><mi>s</mi><mi>σ</mi></mrow></math></span>, <span><math><mrow><mi>i</mi><msup><mrow><mspace></mspace></mrow><mrow><mn>3</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>g</mi></mrow></msub><mspace></mspace><mn>3</mn><mi>d</mi><mi>π</mi></mrow></math></span>, <span><math><mrow><mi>j</mi><msup><mrow><mspace></mspace></mrow><mrow><mn>3</mn></mrow></msup><msub><mrow><mi>Δ</mi></mrow><mrow><mi>g</mi></mrow></msub><mspace></mspace><mn>3</mn><mi>d</mi><mi>δ</mi></mrow></math></span> <span><math><mo>→</mo></math></span> <span><math><mrow><mi>c</mi><msup><mrow><mspace></mspace></mrow><mrow><mn>3</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>u</mi></mrow></msub><mspace></mspace><mn>2</mn><mi>p</mi><mi>π</mi></mrow></math></span> transitions, while D<span><math><msub><mrow></mrow><mrow><mi>2R</mi></mrow></msub></math></span> mainly includes the <span><math><mrow><mi>d</mi><msup><mrow><mspace></mspace></mrow><mrow><mn>3</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>u</mi></mrow></msub><mspace></mspace><mn>3</mn><mi>p</mi><mi>π</mi></mrow></math></span> <span><math><mo>→</mo></math></span> <span><math><mrow><mi>a</mi><msup><mrow><mspace></mspace></mrow><mrow><mn>3</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mspace></mspace><mn>2</mn><mi>s</mi><mi>σ</mi></mrow></math></span> Fulcher band emission. It is experimentally found that D<span><math><msub><mrow></mrow><mrow><mi>2L</mi></mrow></msub></math></span>/D<span><math><msub><mrow></mrow><mrow><mi>2R</mi></mrow></msub></math></span> depends strongly on <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> with little <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> dependence in ranges of <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>∼</mo><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>031</mn><mo>−</mo><mn>6</mn><mo>.</mo><mn>1</mn><mo>)</mo></mrow><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>18</mn></mrow></msup></mrow></math></span> m<sup>−3</sup> and <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>∼</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo>−</mo><mn>13</mn><mo>.</mo><mn>9</mn><mspace></mspace><mi>eV</mi></mrow></math></span>. This observed trend is consistent with collisional-radiative model calculations using Yacora on the Web.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"41 ","pages":"Article 101796"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of D2 molecular band emission for electron density measurement\",\"authors\":\"D. Nishijima ,&nbsp;M.J. Baldwin ,&nbsp;F. Chang ,&nbsp;D. Hwangbo ,&nbsp;G.R. Tynan\",\"doi\":\"10.1016/j.nme.2024.101796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>D<sub>2</sub> molecular band emission observed at a wavelength range of <span><math><mrow><mi>λ</mi><mo>∼</mo><mn>557</mn><mo>−</mo><mn>643</mn><mspace></mspace><mi>nm</mi></mrow></math></span> is utilized to measure electron density, <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span>, in D plasmas of the PISCES-A and PISCES-RF linear plasma devices. The D<sub>2</sub> band is divided at <span><math><mrow><mi>λ</mi><mo>=</mo><mn>593</mn><mspace></mspace><mi>nm</mi></mrow></math></span> to make an intensity ratio, D<span><math><msub><mrow></mrow><mrow><mi>2L</mi></mrow></msub></math></span> (<span><math><mrow><mo>∼</mo><mn>557</mn></mrow></math></span>–<span><math><mrow><mn>593</mn><mspace></mspace><mi>nm</mi></mrow></math></span>)/D<span><math><msub><mrow></mrow><mrow><mi>2R</mi></mrow></msub></math></span> (<span><math><mrow><mo>∼</mo><mn>593</mn></mrow></math></span>–<span><math><mrow><mn>643</mn><mspace></mspace><mi>nm</mi></mrow></math></span>), where D<span><math><msub><mrow></mrow><mrow><mi>2L</mi></mrow></msub></math></span> consists predominantly of the <span><math><mrow><mi>g</mi><msup><mrow><mspace></mspace></mrow><mrow><mn>3</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mspace></mspace><mn>3</mn><mi>d</mi><mi>σ</mi></mrow></math></span>, <span><math><mrow><mi>h</mi><msup><mrow><mspace></mspace></mrow><mrow><mn>3</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mspace></mspace><mn>3</mn><mi>s</mi><mi>σ</mi></mrow></math></span>, <span><math><mrow><mi>i</mi><msup><mrow><mspace></mspace></mrow><mrow><mn>3</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>g</mi></mrow></msub><mspace></mspace><mn>3</mn><mi>d</mi><mi>π</mi></mrow></math></span>, <span><math><mrow><mi>j</mi><msup><mrow><mspace></mspace></mrow><mrow><mn>3</mn></mrow></msup><msub><mrow><mi>Δ</mi></mrow><mrow><mi>g</mi></mrow></msub><mspace></mspace><mn>3</mn><mi>d</mi><mi>δ</mi></mrow></math></span> <span><math><mo>→</mo></math></span> <span><math><mrow><mi>c</mi><msup><mrow><mspace></mspace></mrow><mrow><mn>3</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>u</mi></mrow></msub><mspace></mspace><mn>2</mn><mi>p</mi><mi>π</mi></mrow></math></span> transitions, while D<span><math><msub><mrow></mrow><mrow><mi>2R</mi></mrow></msub></math></span> mainly includes the <span><math><mrow><mi>d</mi><msup><mrow><mspace></mspace></mrow><mrow><mn>3</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>u</mi></mrow></msub><mspace></mspace><mn>3</mn><mi>p</mi><mi>π</mi></mrow></math></span> <span><math><mo>→</mo></math></span> <span><math><mrow><mi>a</mi><msup><mrow><mspace></mspace></mrow><mrow><mn>3</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mspace></mspace><mn>2</mn><mi>s</mi><mi>σ</mi></mrow></math></span> Fulcher band emission. It is experimentally found that D<span><math><msub><mrow></mrow><mrow><mi>2L</mi></mrow></msub></math></span>/D<span><math><msub><mrow></mrow><mrow><mi>2R</mi></mrow></msub></math></span> depends strongly on <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> with little <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> dependence in ranges of <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>∼</mo><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>031</mn><mo>−</mo><mn>6</mn><mo>.</mo><mn>1</mn><mo>)</mo></mrow><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>18</mn></mrow></msup></mrow></math></span> m<sup>−3</sup> and <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>∼</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo>−</mo><mn>13</mn><mo>.</mo><mn>9</mn><mspace></mspace><mi>eV</mi></mrow></math></span>. This observed trend is consistent with collisional-radiative model calculations using Yacora on the Web.</div></div>\",\"PeriodicalId\":56004,\"journal\":{\"name\":\"Nuclear Materials and Energy\",\"volume\":\"41 \",\"pages\":\"Article 101796\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Materials and Energy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352179124002199\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179124002199","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在 λ∼557-643nm 波长范围内观测到的 D2 分子带发射被用来测量 PISCES-A 和 PISCES-RF 线性等离子体装置的 D 等离子体中的电子密度 ne。D2 波段在 λ=593nm 处被划分为 D2L(∼557-593nm)/D2R(∼593-643nm)强度比,其中 D2L 主要由 g3Σg+3dσ 组成、h3Σg+3sσ、i3Πg3dπ、j3Δg3dδ → c3Πu2pπ 转变,而 D2R 主要包括 d3Πu3pπ → a3Σg+2sσ 富彻带发射。实验发现,在 ne∼(0.031-6.1)×1018 m-3 和 Te∼2.3-13.9eV 的范围内,D2L/D2R 与 ne 的关系很大,而与 Te 的关系不大。观察到的这一趋势与利用网上 Yacora 进行的碰撞-辐射模型计算相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilization of D2 molecular band emission for electron density measurement
D2 molecular band emission observed at a wavelength range of λ557643nm is utilized to measure electron density, ne, in D plasmas of the PISCES-A and PISCES-RF linear plasma devices. The D2 band is divided at λ=593nm to make an intensity ratio, D2L (557593nm)/D2R (593643nm), where D2L consists predominantly of the g3Σg+3dσ, h3Σg+3sσ, i3Πg3dπ, j3Δg3dδ c3Πu2pπ transitions, while D2R mainly includes the d3Πu3pπ a3Σg+2sσ Fulcher band emission. It is experimentally found that D2L/D2R depends strongly on ne with little Te dependence in ranges of ne(0.0316.1)×1018 m−3 and Te2.313.9eV. This observed trend is consistent with collisional-radiative model calculations using Yacora on the Web.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Materials and Energy
Nuclear Materials and Energy Materials Science-Materials Science (miscellaneous)
CiteScore
3.70
自引率
15.40%
发文量
175
审稿时长
20 weeks
期刊介绍: The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.
期刊最新文献
Theoretical investigation of structural, electronic, mechanical, surface work function and thermodynamic properties of La1-xMxB6 (M = Ba, Sr, Ca) compounds: Potential plasma grid materials in N-NBI system Study of spectral features and depth distributions of boron layers on tungsten substrates by ps-LIBS in a vacuum environment Initial design concepts for solid boron injection in ITER Utilization of D2 molecular band emission for electron density measurement Fast prediction of irradiation-induced cascade defects using denoising diffusion probabilistic model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1