{"title":"量子子空间可控性意味着完全可控性","authors":"Francesca Albertini , Domenico D'Alessandro","doi":"10.1016/j.laa.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>In the analysis of controllability of finite dimensional quantum systems, <em>subspace controllability</em> refers to the situation where the underlying Hilbert space splits into the direct sum of invariant subspaces, and, on each of such invariant subspaces, it is possible to generate any arbitrary unitary operation using appropriate control functions. This is a typical situation in the presence of symmetries for the dynamics.</div><div>We investigate whether and when if subspace controllability is verified, the addition of an extra Hamiltonian to the dynamics implies full controllability of the system. Under the natural (and necessary) condition that the new Hamiltonian connects all the invariant subspaces, we show that this is always the case, except for a very specific case we shall describe. Even in this specific case, a weaker notion of controllability, controllability of the state (<em>Pure State Controllability</em>) is verified.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"705 ","pages":"Pages 207-229"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum subspace controllability implying full controllability\",\"authors\":\"Francesca Albertini , Domenico D'Alessandro\",\"doi\":\"10.1016/j.laa.2024.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the analysis of controllability of finite dimensional quantum systems, <em>subspace controllability</em> refers to the situation where the underlying Hilbert space splits into the direct sum of invariant subspaces, and, on each of such invariant subspaces, it is possible to generate any arbitrary unitary operation using appropriate control functions. This is a typical situation in the presence of symmetries for the dynamics.</div><div>We investigate whether and when if subspace controllability is verified, the addition of an extra Hamiltonian to the dynamics implies full controllability of the system. Under the natural (and necessary) condition that the new Hamiltonian connects all the invariant subspaces, we show that this is always the case, except for a very specific case we shall describe. Even in this specific case, a weaker notion of controllability, controllability of the state (<em>Pure State Controllability</em>) is verified.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"705 \",\"pages\":\"Pages 207-229\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524004142\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004142","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Quantum subspace controllability implying full controllability
In the analysis of controllability of finite dimensional quantum systems, subspace controllability refers to the situation where the underlying Hilbert space splits into the direct sum of invariant subspaces, and, on each of such invariant subspaces, it is possible to generate any arbitrary unitary operation using appropriate control functions. This is a typical situation in the presence of symmetries for the dynamics.
We investigate whether and when if subspace controllability is verified, the addition of an extra Hamiltonian to the dynamics implies full controllability of the system. Under the natural (and necessary) condition that the new Hamiltonian connects all the invariant subspaces, we show that this is always the case, except for a very specific case we shall describe. Even in this specific case, a weaker notion of controllability, controllability of the state (Pure State Controllability) is verified.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.