用二氧化锡对 LiNi0.65Co0.15Mn0.2O2 阴极材料进行表面改性以提高其电化学性能

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Colloids and Surfaces A: Physicochemical and Engineering Aspects Pub Date : 2024-11-05 DOI:10.1016/j.colsurfa.2024.135719
Fu Yang, Yan-Ming Jia, Zhi-Yan Bai, Li-Juan Sun, Yu-Long Xie
{"title":"用二氧化锡对 LiNi0.65Co0.15Mn0.2O2 阴极材料进行表面改性以提高其电化学性能","authors":"Fu Yang,&nbsp;Yan-Ming Jia,&nbsp;Zhi-Yan Bai,&nbsp;Li-Juan Sun,&nbsp;Yu-Long Xie","doi":"10.1016/j.colsurfa.2024.135719","DOIUrl":null,"url":null,"abstract":"<div><div>LiNi<sub>0.65</sub>Co<sub>0.15</sub>Mn<sub>0.2</sub>O<sub>2</sub> batteries have attracted more and more attention due to their high energy density. However, LiNi<sub>0.65</sub>Co<sub>0.15</sub>Mn<sub>0.2</sub>O<sub>2</sub> possesses adverse factors such as severe Li-Ni mixing and side reactions between active substance and electrolyte, which limits its electrochemical performance. Hence, we employed the SnO<sub>2</sub> surface coating method to enhance its performance. SnO<sub>2</sub> coating inhibits the direct contact between LiNi<sub>0.65</sub>Co<sub>0.15</sub>Mn<sub>0.2</sub>O<sub>2</sub> and the electrolyte, which reduces the lithium-nickel mixing, enlarges the lithium layer spacing, and contributes to the improvement of the specific capacity of discharge and the cycling performance. The electrochemical results indicate the optimal SnO<sub>2</sub>-coated LiNi<sub>0.65</sub>Co<sub>0.15</sub>Mn<sub>0.2</sub>O<sub>2</sub> show excellent cycling performance (85.0 % capacity retention for 100 cycles at 0.1 C) and multiplicative performance (124.1 mA·h·g<sup>−1</sup> discharge specific capacity at 2 C). The paper highlights the SnO<sub>2</sub> cladding technology which provides an excellent research idea to improve lithium-ion batteries.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"705 ","pages":"Article 135719"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of electrochemical performance by surface modification of LiNi0.65Co0.15Mn0.2O2 cathode materials with SnO2\",\"authors\":\"Fu Yang,&nbsp;Yan-Ming Jia,&nbsp;Zhi-Yan Bai,&nbsp;Li-Juan Sun,&nbsp;Yu-Long Xie\",\"doi\":\"10.1016/j.colsurfa.2024.135719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>LiNi<sub>0.65</sub>Co<sub>0.15</sub>Mn<sub>0.2</sub>O<sub>2</sub> batteries have attracted more and more attention due to their high energy density. However, LiNi<sub>0.65</sub>Co<sub>0.15</sub>Mn<sub>0.2</sub>O<sub>2</sub> possesses adverse factors such as severe Li-Ni mixing and side reactions between active substance and electrolyte, which limits its electrochemical performance. Hence, we employed the SnO<sub>2</sub> surface coating method to enhance its performance. SnO<sub>2</sub> coating inhibits the direct contact between LiNi<sub>0.65</sub>Co<sub>0.15</sub>Mn<sub>0.2</sub>O<sub>2</sub> and the electrolyte, which reduces the lithium-nickel mixing, enlarges the lithium layer spacing, and contributes to the improvement of the specific capacity of discharge and the cycling performance. The electrochemical results indicate the optimal SnO<sub>2</sub>-coated LiNi<sub>0.65</sub>Co<sub>0.15</sub>Mn<sub>0.2</sub>O<sub>2</sub> show excellent cycling performance (85.0 % capacity retention for 100 cycles at 0.1 C) and multiplicative performance (124.1 mA·h·g<sup>−1</sup> discharge specific capacity at 2 C). The paper highlights the SnO<sub>2</sub> cladding technology which provides an excellent research idea to improve lithium-ion batteries.</div></div>\",\"PeriodicalId\":278,\"journal\":{\"name\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"volume\":\"705 \",\"pages\":\"Article 135719\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927775724025834\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724025834","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

LiNi0.65Co0.15Mn0.2O2 电池因其能量密度高而受到越来越多的关注。然而,LiNi0.65Co0.15Mn0.2O2 存在严重的锂镍混合和活性物质与电解质之间的副反应等不利因素,限制了其电化学性能。因此,我们采用了二氧化锡表面镀膜的方法来提高其性能。SnO2 涂层抑制了 LiNi0.65Co0.15Mn0.2O2 与电解液的直接接触,减少了锂镍混合,扩大了锂层间距,有助于提高放电比容量和循环性能。电化学结果表明,最佳的 SnO2 涂层 LiNi0.65Co0.15Mn0.2O2 具有优异的循环性能(0.1 C 条件下 100 次循环容量保持率为 85.0%)和倍增性能(2 C 条件下放电比容量为 124.1 mA-h-g-1)。论文强调了二氧化锰包层技术,为改进锂离子电池提供了一个极好的研究思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of electrochemical performance by surface modification of LiNi0.65Co0.15Mn0.2O2 cathode materials with SnO2
LiNi0.65Co0.15Mn0.2O2 batteries have attracted more and more attention due to their high energy density. However, LiNi0.65Co0.15Mn0.2O2 possesses adverse factors such as severe Li-Ni mixing and side reactions between active substance and electrolyte, which limits its electrochemical performance. Hence, we employed the SnO2 surface coating method to enhance its performance. SnO2 coating inhibits the direct contact between LiNi0.65Co0.15Mn0.2O2 and the electrolyte, which reduces the lithium-nickel mixing, enlarges the lithium layer spacing, and contributes to the improvement of the specific capacity of discharge and the cycling performance. The electrochemical results indicate the optimal SnO2-coated LiNi0.65Co0.15Mn0.2O2 show excellent cycling performance (85.0 % capacity retention for 100 cycles at 0.1 C) and multiplicative performance (124.1 mA·h·g−1 discharge specific capacity at 2 C). The paper highlights the SnO2 cladding technology which provides an excellent research idea to improve lithium-ion batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
期刊最新文献
Editorial Board Comprehensive consideration of screening fluoride electrolyte for electrodeposition of rare earth cerium Synergistic effects of mediated by different 1,2-epoxybutane addition numbers butoxylated alkyl block alcohol ethers and SDS in mixed systems The strategy of copper oxide control ammonia atmosphere constructs S-scheme g-C3N4 heterojunction photocatalyst for photocatalytic hydrogen evolution Dynamics of nanofiller–polymer synergy in gel formation via macromolecular crowding: Structure-property relationship of halloysite-integrated hybrid gels with abundant carboxyl groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1