构建装饰在 ZnFe2O4@ZnIn2S4 核壳结构上的金纳米粒子以提高光催化制氢能力

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Colloids and Surfaces A: Physicochemical and Engineering Aspects Pub Date : 2024-11-07 DOI:10.1016/j.colsurfa.2024.135705
Jiahui Song , Wen Ge , Sidi Deng , Jiawen Tang , Shukang Deng , Peizhi Yang
{"title":"构建装饰在 ZnFe2O4@ZnIn2S4 核壳结构上的金纳米粒子以提高光催化制氢能力","authors":"Jiahui Song ,&nbsp;Wen Ge ,&nbsp;Sidi Deng ,&nbsp;Jiawen Tang ,&nbsp;Shukang Deng ,&nbsp;Peizhi Yang","doi":"10.1016/j.colsurfa.2024.135705","DOIUrl":null,"url":null,"abstract":"<div><div>Developing effective photocatalysts for water splitting is essential to generating H<sub>2</sub> energy sources. Herein, a novel ZnFe<sub>2</sub>O<sub>4</sub>@ZnIn<sub>2</sub>S<sub>4</sub>/Au ternary composite (abbreviated as ZFO@ZIS/Au) was successfully designed and fabricated by loading Au nanoparticles on the ZFO@ZIS surfaces for effective photocatalytic H<sub>2</sub> generation for the first time. Attributed to the synergistic effect of the traditional II-type heterojunction charge transfer and Au nanoparticles as co-catalysts, the ZFO@ZIS/Au heterojunction generated greater amounts of hydrogen under visible light irradiation. The ZFO-7 %@ZIS/Au-2 catalyst displayed the highest H<sub>2</sub> production rate of 1145.38 μmol∙g<sup>−1</sup>∙h<sup>−1</sup>, which was almost 3.87 times more than the ZIS value. Furthermore, several characterization techniques were performed to investigate the catalysts and evaluate the catalyst's photocatalytic activity when exposed to visible light. Lastly, a detailed discussion of the corresponding photocatalytic H<sub>2</sub> production process of the as-prepared ZFO@ZIS/Au heterojunction was provided. The distinctive research might offer a potential approach for modifying zinc ferrate for photocatalytic hydrogen production.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"705 ","pages":"Article 135705"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Au nanoparticles decorated on ZnFe2O4@ZnIn2S4 core-shell structure to enhance photocatalytic hydrogen production\",\"authors\":\"Jiahui Song ,&nbsp;Wen Ge ,&nbsp;Sidi Deng ,&nbsp;Jiawen Tang ,&nbsp;Shukang Deng ,&nbsp;Peizhi Yang\",\"doi\":\"10.1016/j.colsurfa.2024.135705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Developing effective photocatalysts for water splitting is essential to generating H<sub>2</sub> energy sources. Herein, a novel ZnFe<sub>2</sub>O<sub>4</sub>@ZnIn<sub>2</sub>S<sub>4</sub>/Au ternary composite (abbreviated as ZFO@ZIS/Au) was successfully designed and fabricated by loading Au nanoparticles on the ZFO@ZIS surfaces for effective photocatalytic H<sub>2</sub> generation for the first time. Attributed to the synergistic effect of the traditional II-type heterojunction charge transfer and Au nanoparticles as co-catalysts, the ZFO@ZIS/Au heterojunction generated greater amounts of hydrogen under visible light irradiation. The ZFO-7 %@ZIS/Au-2 catalyst displayed the highest H<sub>2</sub> production rate of 1145.38 μmol∙g<sup>−1</sup>∙h<sup>−1</sup>, which was almost 3.87 times more than the ZIS value. Furthermore, several characterization techniques were performed to investigate the catalysts and evaluate the catalyst's photocatalytic activity when exposed to visible light. Lastly, a detailed discussion of the corresponding photocatalytic H<sub>2</sub> production process of the as-prepared ZFO@ZIS/Au heterojunction was provided. The distinctive research might offer a potential approach for modifying zinc ferrate for photocatalytic hydrogen production.</div></div>\",\"PeriodicalId\":278,\"journal\":{\"name\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"volume\":\"705 \",\"pages\":\"Article 135705\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092777572402569X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092777572402569X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发有效的光催化剂用于水分离对产生 H2 能源至关重要。在本文中,通过在 ZFO@ZIS 表面负载金纳米颗粒,首次成功设计和制备了新型 ZnFe2O4@ZnIn2S4/Au 三元复合材料(简称 ZFO@ZIS/Au),用于有效光催化产生 H2。由于传统的 II 型异质结电荷转移和金纳米粒子作为辅助催化剂的协同作用,ZFO@ZIS/Au 异质结在可见光照射下产生了更多的氢气。ZFO-7 %@ZIS/Au-2 催化剂的氢气产生率最高,达到 1145.38 μmol∙g-1∙h-1,几乎是 ZIS 值的 3.87 倍。此外,还采用了多种表征技术来研究催化剂,并评估了催化剂在可见光照射下的光催化活性。最后,详细讨论了制备的 ZFO@ZIS/Au 异质结的相应光催化 H2 生成过程。这项独特的研究可能会为改性铁酸锌用于光催化制氢提供一种潜在的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of Au nanoparticles decorated on ZnFe2O4@ZnIn2S4 core-shell structure to enhance photocatalytic hydrogen production
Developing effective photocatalysts for water splitting is essential to generating H2 energy sources. Herein, a novel ZnFe2O4@ZnIn2S4/Au ternary composite (abbreviated as ZFO@ZIS/Au) was successfully designed and fabricated by loading Au nanoparticles on the ZFO@ZIS surfaces for effective photocatalytic H2 generation for the first time. Attributed to the synergistic effect of the traditional II-type heterojunction charge transfer and Au nanoparticles as co-catalysts, the ZFO@ZIS/Au heterojunction generated greater amounts of hydrogen under visible light irradiation. The ZFO-7 %@ZIS/Au-2 catalyst displayed the highest H2 production rate of 1145.38 μmol∙g−1∙h−1, which was almost 3.87 times more than the ZIS value. Furthermore, several characterization techniques were performed to investigate the catalysts and evaluate the catalyst's photocatalytic activity when exposed to visible light. Lastly, a detailed discussion of the corresponding photocatalytic H2 production process of the as-prepared ZFO@ZIS/Au heterojunction was provided. The distinctive research might offer a potential approach for modifying zinc ferrate for photocatalytic hydrogen production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
期刊最新文献
Editorial Board Comprehensive consideration of screening fluoride electrolyte for electrodeposition of rare earth cerium Synergistic effects of mediated by different 1,2-epoxybutane addition numbers butoxylated alkyl block alcohol ethers and SDS in mixed systems The strategy of copper oxide control ammonia atmosphere constructs S-scheme g-C3N4 heterojunction photocatalyst for photocatalytic hydrogen evolution Dynamics of nanofiller–polymer synergy in gel formation via macromolecular crowding: Structure-property relationship of halloysite-integrated hybrid gels with abundant carboxyl groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1