Zijian Huang , Hongkang Tian , Mengke Cai , Tenglong Cong , Yao Xiao , Hanyang Gu
{"title":"六方格中 7 杆 HCF 组件沸腾危机特征的数值研究","authors":"Zijian Huang , Hongkang Tian , Mengke Cai , Tenglong Cong , Yao Xiao , Hanyang Gu","doi":"10.1016/j.pnucene.2024.105528","DOIUrl":null,"url":null,"abstract":"<div><div>Helical cruciform fuel (HCF) has the advantages of larger heat transfer area, enhanced coolant mixing and self-supporting, which contribute to increasing power density and safety margins. Compared with the square lattice configuration, the hexagonal arrangement of HCF assembly is more compact, which can help achieve a higher power density. In this paper, the flow characteristics and heat transfer behaviors of HCF in hexagonal lattice were predicted at high and low vapor quality during boiling crisis based on Eulerian two-fluid model. The influence of twist pitches and cross-sections of the fuel rod on heat transfer efficiency and fuel temperature was also studied. The cross-flow intensity changed periodically with a 30° cycle at low vapor quality, and did not fluctuate periodically at high vapor quality, which decreased with the increase of flow resistance. The highest heat flux of HCF rod was the at the blade root and the lowest was at the blade tip, and the maximum to average heat flux ratio was about 1.8. The peak vapor fraction and temperature occurred at leeside side of the fuel rods. The increase of the twist pitch reduced the critical heat flux (CHF), and the increase of blade length enhanced the non-uniformity of heat flux distribution. During boiling crisis, the maximum temperature of the fuel was lower than the phase transition temperature of U-50 wt%Zr alloy, which means the cladding meltdown caused by boiling crisis will occur before phase transition of the fuel.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"178 ","pages":"Article 105528"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation on boiling crisis characteristic of a 7-rod HCF assembly in hexagonal lattice\",\"authors\":\"Zijian Huang , Hongkang Tian , Mengke Cai , Tenglong Cong , Yao Xiao , Hanyang Gu\",\"doi\":\"10.1016/j.pnucene.2024.105528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Helical cruciform fuel (HCF) has the advantages of larger heat transfer area, enhanced coolant mixing and self-supporting, which contribute to increasing power density and safety margins. Compared with the square lattice configuration, the hexagonal arrangement of HCF assembly is more compact, which can help achieve a higher power density. In this paper, the flow characteristics and heat transfer behaviors of HCF in hexagonal lattice were predicted at high and low vapor quality during boiling crisis based on Eulerian two-fluid model. The influence of twist pitches and cross-sections of the fuel rod on heat transfer efficiency and fuel temperature was also studied. The cross-flow intensity changed periodically with a 30° cycle at low vapor quality, and did not fluctuate periodically at high vapor quality, which decreased with the increase of flow resistance. The highest heat flux of HCF rod was the at the blade root and the lowest was at the blade tip, and the maximum to average heat flux ratio was about 1.8. The peak vapor fraction and temperature occurred at leeside side of the fuel rods. The increase of the twist pitch reduced the critical heat flux (CHF), and the increase of blade length enhanced the non-uniformity of heat flux distribution. During boiling crisis, the maximum temperature of the fuel was lower than the phase transition temperature of U-50 wt%Zr alloy, which means the cladding meltdown caused by boiling crisis will occur before phase transition of the fuel.</div></div>\",\"PeriodicalId\":20617,\"journal\":{\"name\":\"Progress in Nuclear Energy\",\"volume\":\"178 \",\"pages\":\"Article 105528\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0149197024004785\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197024004785","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Numerical investigation on boiling crisis characteristic of a 7-rod HCF assembly in hexagonal lattice
Helical cruciform fuel (HCF) has the advantages of larger heat transfer area, enhanced coolant mixing and self-supporting, which contribute to increasing power density and safety margins. Compared with the square lattice configuration, the hexagonal arrangement of HCF assembly is more compact, which can help achieve a higher power density. In this paper, the flow characteristics and heat transfer behaviors of HCF in hexagonal lattice were predicted at high and low vapor quality during boiling crisis based on Eulerian two-fluid model. The influence of twist pitches and cross-sections of the fuel rod on heat transfer efficiency and fuel temperature was also studied. The cross-flow intensity changed periodically with a 30° cycle at low vapor quality, and did not fluctuate periodically at high vapor quality, which decreased with the increase of flow resistance. The highest heat flux of HCF rod was the at the blade root and the lowest was at the blade tip, and the maximum to average heat flux ratio was about 1.8. The peak vapor fraction and temperature occurred at leeside side of the fuel rods. The increase of the twist pitch reduced the critical heat flux (CHF), and the increase of blade length enhanced the non-uniformity of heat flux distribution. During boiling crisis, the maximum temperature of the fuel was lower than the phase transition temperature of U-50 wt%Zr alloy, which means the cladding meltdown caused by boiling crisis will occur before phase transition of the fuel.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.