YaoDi Li , Mei Huang , Boxue Wang , Xiangyuan Meng , YanTing Cheng
{"title":"关于具有不均匀线距的线包棒束水热特性的数值研究","authors":"YaoDi Li , Mei Huang , Boxue Wang , Xiangyuan Meng , YanTing Cheng","doi":"10.1016/j.pnucene.2024.105529","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, thermal hydraulic behaviors in a 19-pin bundle fuel assembly with nonuniform wire pitches is investigated by combing CFD with the Kriging method. To optimize the design, two geometric variables—the ratio of inner pitch to reference pitch (Pi/P) and the ratio of outer pitch to reference pitch (Po/P)—are selected, and the design space is sampled using Latin Hypercube Sampling (LHS). The sampled points are then subjected to CFD analysis. Convergence is considered achieved when the residuals of all variables are below 1e-5. The optimization problem aims to minimize the objective function, which is a linear combination of the cross-sectional temperature difference and friction factor. Sequential Quadratic Programming (SQP) is employed to search for the optimal point using a constructed meta-model. When compared to the reference shape, the optimal shape exhibits higher axial velocity in the inner channel, higher average temperature, smaller temperature difference at the outlet section, and reduced pressure drop in the fuel assembly. The Kriging model accurately predicts the cross-sectional temperature difference and friction coefficient for the optimal shape, consistent with the CFD calculation results. This confirms the accuracy and feasibility of the Kriging model in fuel assembly optimization.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"178 ","pages":"Article 105529"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study on the hydrothermal characteristics of a wire-wrapped rod bundle with nonuniform wire pitches\",\"authors\":\"YaoDi Li , Mei Huang , Boxue Wang , Xiangyuan Meng , YanTing Cheng\",\"doi\":\"10.1016/j.pnucene.2024.105529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, thermal hydraulic behaviors in a 19-pin bundle fuel assembly with nonuniform wire pitches is investigated by combing CFD with the Kriging method. To optimize the design, two geometric variables—the ratio of inner pitch to reference pitch (Pi/P) and the ratio of outer pitch to reference pitch (Po/P)—are selected, and the design space is sampled using Latin Hypercube Sampling (LHS). The sampled points are then subjected to CFD analysis. Convergence is considered achieved when the residuals of all variables are below 1e-5. The optimization problem aims to minimize the objective function, which is a linear combination of the cross-sectional temperature difference and friction factor. Sequential Quadratic Programming (SQP) is employed to search for the optimal point using a constructed meta-model. When compared to the reference shape, the optimal shape exhibits higher axial velocity in the inner channel, higher average temperature, smaller temperature difference at the outlet section, and reduced pressure drop in the fuel assembly. The Kriging model accurately predicts the cross-sectional temperature difference and friction coefficient for the optimal shape, consistent with the CFD calculation results. This confirms the accuracy and feasibility of the Kriging model in fuel assembly optimization.</div></div>\",\"PeriodicalId\":20617,\"journal\":{\"name\":\"Progress in Nuclear Energy\",\"volume\":\"178 \",\"pages\":\"Article 105529\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0149197024004797\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197024004797","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Numerical study on the hydrothermal characteristics of a wire-wrapped rod bundle with nonuniform wire pitches
In this study, thermal hydraulic behaviors in a 19-pin bundle fuel assembly with nonuniform wire pitches is investigated by combing CFD with the Kriging method. To optimize the design, two geometric variables—the ratio of inner pitch to reference pitch (Pi/P) and the ratio of outer pitch to reference pitch (Po/P)—are selected, and the design space is sampled using Latin Hypercube Sampling (LHS). The sampled points are then subjected to CFD analysis. Convergence is considered achieved when the residuals of all variables are below 1e-5. The optimization problem aims to minimize the objective function, which is a linear combination of the cross-sectional temperature difference and friction factor. Sequential Quadratic Programming (SQP) is employed to search for the optimal point using a constructed meta-model. When compared to the reference shape, the optimal shape exhibits higher axial velocity in the inner channel, higher average temperature, smaller temperature difference at the outlet section, and reduced pressure drop in the fuel assembly. The Kriging model accurately predicts the cross-sectional temperature difference and friction coefficient for the optimal shape, consistent with the CFD calculation results. This confirms the accuracy and feasibility of the Kriging model in fuel assembly optimization.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.