用于抑制沉积物中磷酸盐释放的新型活性沉积物封盖材料(土工聚合物)的制备与表征

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Colloids and Surfaces A: Physicochemical and Engineering Aspects Pub Date : 2024-11-06 DOI:10.1016/j.colsurfa.2024.135687
Meng Lu , Yuxin Xie , Xiao Hu , Yongjie Xue , Haobo Hou , Zhen Hu , Wentao Li , Teng Wang
{"title":"用于抑制沉积物中磷酸盐释放的新型活性沉积物封盖材料(土工聚合物)的制备与表征","authors":"Meng Lu ,&nbsp;Yuxin Xie ,&nbsp;Xiao Hu ,&nbsp;Yongjie Xue ,&nbsp;Haobo Hou ,&nbsp;Zhen Hu ,&nbsp;Wentao Li ,&nbsp;Teng Wang","doi":"10.1016/j.colsurfa.2024.135687","DOIUrl":null,"url":null,"abstract":"<div><div>In situ remediation of sediment can effectively control the release of phosphate in sediment and improve water eutrophication. The essential question of this remediation techniques lies in the development of stable, high-efficiency, low-cost and easily available active sediment capping materials. This study synthesised a novel sediment capping material using bulk solid waste, and phosphate inhibition mechanism of the materials was explored. Results indicated that GSCM was prepared under the conditions of NaOH concentration of 3 M, hydrothermal temperature of 160℃, hydrothermal time of 36 h and the mass ratio of 40 wt% SS to 60 wt% FA. The result of batch adsorption and compressive strength test suggested that phosphate adsorption capacity and compressive strength of GSCM were 2.15 mg/g and 24.20 MPa, respectively. The characterization result showed that GSCM was composed of sodium zeolite, riversideite, grossular and fayalite, exhibiting a uniformly distributed slit mesoporous structure. The <em>in-situ</em> inhibition efficiency of GSCM to P ranged from 76.65 % to 86.72 %, exceeding that of commercial zeolite. The <em>in-situ</em> inhibition mechanism was controlled by sodium zeolite and riversideite, and concluded by the following:1) Substitution between [SiO<sub>4</sub>] tetrahedra (within the sodium zeolite structure), -OH (on the surface of materials) and [PO<sub>4</sub>], 2) Coordination of [PO<sub>4</sub>] tetrahedra with Al active site within the sodium zeolite structure, 3) Precipitation reaction between phosphate and slow-release of Ca<sup>2+</sup> from the riversideite.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"705 ","pages":"Article 135687"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and characterization of a novel active sediment capping material (geopolymer) for inhibiting phosphate releasing from sediment\",\"authors\":\"Meng Lu ,&nbsp;Yuxin Xie ,&nbsp;Xiao Hu ,&nbsp;Yongjie Xue ,&nbsp;Haobo Hou ,&nbsp;Zhen Hu ,&nbsp;Wentao Li ,&nbsp;Teng Wang\",\"doi\":\"10.1016/j.colsurfa.2024.135687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In situ remediation of sediment can effectively control the release of phosphate in sediment and improve water eutrophication. The essential question of this remediation techniques lies in the development of stable, high-efficiency, low-cost and easily available active sediment capping materials. This study synthesised a novel sediment capping material using bulk solid waste, and phosphate inhibition mechanism of the materials was explored. Results indicated that GSCM was prepared under the conditions of NaOH concentration of 3 M, hydrothermal temperature of 160℃, hydrothermal time of 36 h and the mass ratio of 40 wt% SS to 60 wt% FA. The result of batch adsorption and compressive strength test suggested that phosphate adsorption capacity and compressive strength of GSCM were 2.15 mg/g and 24.20 MPa, respectively. The characterization result showed that GSCM was composed of sodium zeolite, riversideite, grossular and fayalite, exhibiting a uniformly distributed slit mesoporous structure. The <em>in-situ</em> inhibition efficiency of GSCM to P ranged from 76.65 % to 86.72 %, exceeding that of commercial zeolite. The <em>in-situ</em> inhibition mechanism was controlled by sodium zeolite and riversideite, and concluded by the following:1) Substitution between [SiO<sub>4</sub>] tetrahedra (within the sodium zeolite structure), -OH (on the surface of materials) and [PO<sub>4</sub>], 2) Coordination of [PO<sub>4</sub>] tetrahedra with Al active site within the sodium zeolite structure, 3) Precipitation reaction between phosphate and slow-release of Ca<sup>2+</sup> from the riversideite.</div></div>\",\"PeriodicalId\":278,\"journal\":{\"name\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"volume\":\"705 \",\"pages\":\"Article 135687\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927775724025512\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724025512","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

沉积物原位修复可以有效控制沉积物中磷酸盐的释放,改善水体富营养化状况。这种修复技术的关键问题在于开发稳定、高效、低成本、易获得的活性沉积物封盖材料。本研究利用大宗固体废弃物合成了一种新型沉积物覆盖材料,并探讨了该材料的磷酸盐抑制机理。结果表明,在 NaOH 浓度为 3 M、水热温度为 160℃、水热时间为 36 h、质量比为 40 wt% SS 与 60 wt% FA 的条件下制备了 GSCM。批量吸附和抗压强度试验结果表明,GSCM 的磷酸盐吸附量和抗压强度分别为 2.15 mg/g 和 24.20 MPa。表征结果表明,GSCM 由钠质沸石、河泥质沸石、芒硝和斐来石组成,呈均匀分布的狭缝中孔结构。GSCM 对 P 的原位抑制效率为 76.65 % 至 86.72 %,超过了商用沸石的抑制效率。钠沸石和河泥石控制了原位抑制机理,并得出以下结论:1)[SiO4]四面体(钠沸石结构内)、-OH(材料表面)和[PO4]之间的置换;2)[PO4]四面体与钠沸石结构内 Al 活性位点的配位;3)磷酸盐之间的沉淀反应和河泥石中 Ca2+ 的缓慢释放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and characterization of a novel active sediment capping material (geopolymer) for inhibiting phosphate releasing from sediment
In situ remediation of sediment can effectively control the release of phosphate in sediment and improve water eutrophication. The essential question of this remediation techniques lies in the development of stable, high-efficiency, low-cost and easily available active sediment capping materials. This study synthesised a novel sediment capping material using bulk solid waste, and phosphate inhibition mechanism of the materials was explored. Results indicated that GSCM was prepared under the conditions of NaOH concentration of 3 M, hydrothermal temperature of 160℃, hydrothermal time of 36 h and the mass ratio of 40 wt% SS to 60 wt% FA. The result of batch adsorption and compressive strength test suggested that phosphate adsorption capacity and compressive strength of GSCM were 2.15 mg/g and 24.20 MPa, respectively. The characterization result showed that GSCM was composed of sodium zeolite, riversideite, grossular and fayalite, exhibiting a uniformly distributed slit mesoporous structure. The in-situ inhibition efficiency of GSCM to P ranged from 76.65 % to 86.72 %, exceeding that of commercial zeolite. The in-situ inhibition mechanism was controlled by sodium zeolite and riversideite, and concluded by the following:1) Substitution between [SiO4] tetrahedra (within the sodium zeolite structure), -OH (on the surface of materials) and [PO4], 2) Coordination of [PO4] tetrahedra with Al active site within the sodium zeolite structure, 3) Precipitation reaction between phosphate and slow-release of Ca2+ from the riversideite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
期刊最新文献
Comprehensive consideration of screening fluoride electrolyte for electrodeposition of rare earth cerium Synergistic effects of mediated by different 1,2-epoxybutane addition numbers butoxylated alkyl block alcohol ethers and SDS in mixed systems Construction of BaTiO3/g-C3N4 S-type heterojunctions for photocatalytic degradation of Tetracycline Synergistic degradation and ecotoxicology assessment of tetracycline by II-scheme Cu3BiS3/Bi2Fe4O9 photocatalytic activation of peroxymonosulfate Atom-level local structures of a ternary composite of cellulose and metal (hydro)oxides and its applications on lead ion capture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1