Qi Jia , Xiaomei Feng , Wei Zhang , Yu Liu , Nan Pu , Nicu Sebe
{"title":"通过相关区域聚焦变换器进行双级渐进式同构估计","authors":"Qi Jia , Xiaomei Feng , Wei Zhang , Yu Liu , Nan Pu , Nicu Sebe","doi":"10.1016/j.cviu.2024.104209","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel correlative region-focused transformer for accurate homography estimation by a bilevel progressive architecture. Existing methods typically consider the entire image features to establish correlations for a pair of input images, but irrelevant regions often introduce mismatches and outliers. In contrast, our network effectively mitigates the negative impact of irrelevant regions through a bilevel progressive homography estimation architecture. Specifically, in the outer iteration, we progressively estimate the homography matrix at different feature scales; in the inner iteration, we dynamically extract correlative regions and progressively focus on their corresponding features from both inputs. Moreover, we develop a quadtree attention mechanism based on the transformer to explicitly capture the correspondence between the input images, localizing and cropping the correlative regions for the next iteration. This progressive training strategy enhances feature consistency and enables precise alignment with comparable inference rates. Extensive experiments on qualitative and quantitative comparisons show that the proposed method exhibits competitive alignment results while reducing the mean average corner error (MACE) on the MS-COCO dataset compared to previous methods, without increasing additional parameter cost.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"250 ","pages":"Article 104209"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilevel progressive homography estimation via correlative region-focused transformer\",\"authors\":\"Qi Jia , Xiaomei Feng , Wei Zhang , Yu Liu , Nan Pu , Nicu Sebe\",\"doi\":\"10.1016/j.cviu.2024.104209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a novel correlative region-focused transformer for accurate homography estimation by a bilevel progressive architecture. Existing methods typically consider the entire image features to establish correlations for a pair of input images, but irrelevant regions often introduce mismatches and outliers. In contrast, our network effectively mitigates the negative impact of irrelevant regions through a bilevel progressive homography estimation architecture. Specifically, in the outer iteration, we progressively estimate the homography matrix at different feature scales; in the inner iteration, we dynamically extract correlative regions and progressively focus on their corresponding features from both inputs. Moreover, we develop a quadtree attention mechanism based on the transformer to explicitly capture the correspondence between the input images, localizing and cropping the correlative regions for the next iteration. This progressive training strategy enhances feature consistency and enables precise alignment with comparable inference rates. Extensive experiments on qualitative and quantitative comparisons show that the proposed method exhibits competitive alignment results while reducing the mean average corner error (MACE) on the MS-COCO dataset compared to previous methods, without increasing additional parameter cost.</div></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":\"250 \",\"pages\":\"Article 104209\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S107731422400290X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107731422400290X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Bilevel progressive homography estimation via correlative region-focused transformer
We propose a novel correlative region-focused transformer for accurate homography estimation by a bilevel progressive architecture. Existing methods typically consider the entire image features to establish correlations for a pair of input images, but irrelevant regions often introduce mismatches and outliers. In contrast, our network effectively mitigates the negative impact of irrelevant regions through a bilevel progressive homography estimation architecture. Specifically, in the outer iteration, we progressively estimate the homography matrix at different feature scales; in the inner iteration, we dynamically extract correlative regions and progressively focus on their corresponding features from both inputs. Moreover, we develop a quadtree attention mechanism based on the transformer to explicitly capture the correspondence between the input images, localizing and cropping the correlative regions for the next iteration. This progressive training strategy enhances feature consistency and enables precise alignment with comparable inference rates. Extensive experiments on qualitative and quantitative comparisons show that the proposed method exhibits competitive alignment results while reducing the mean average corner error (MACE) on the MS-COCO dataset compared to previous methods, without increasing additional parameter cost.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems