{"title":"多推杆合作系统的后向可达性","authors":"Chris Köcher , Dietrich Kuske","doi":"10.1016/j.jcss.2024.103601","DOIUrl":null,"url":null,"abstract":"<div><div>A cooperating multi-pushdown system consists of a tuple of pushdown systems that can delegate the execution of recursive procedures to sub-tuples; control returns to the calling tuple once all sub-tuples finished their task. This allows the concurrent execution since disjoint sub-tuples can perform their task independently. Because of the concrete form of recursive descent into sub-tuples, the content of the multi-pushdown does not form an arbitrary tuple of words, but can be understood as a Mazurkiewicz trace. For such systems, we prove that the backwards reachability relation efficiently preserves recognizability, generalizing a result and proof technique by Bouajjani et al. for single-pushdown systems. It follows that the reachability relation is decidable for cooperating multi-pushdown systems in polynomial time and the same holds, e.g., for safety and liveness properties given by recognizable sets of configurations.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"148 ","pages":"Article 103601"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backwards-reachability for cooperating multi-pushdown systems\",\"authors\":\"Chris Köcher , Dietrich Kuske\",\"doi\":\"10.1016/j.jcss.2024.103601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A cooperating multi-pushdown system consists of a tuple of pushdown systems that can delegate the execution of recursive procedures to sub-tuples; control returns to the calling tuple once all sub-tuples finished their task. This allows the concurrent execution since disjoint sub-tuples can perform their task independently. Because of the concrete form of recursive descent into sub-tuples, the content of the multi-pushdown does not form an arbitrary tuple of words, but can be understood as a Mazurkiewicz trace. For such systems, we prove that the backwards reachability relation efficiently preserves recognizability, generalizing a result and proof technique by Bouajjani et al. for single-pushdown systems. It follows that the reachability relation is decidable for cooperating multi-pushdown systems in polynomial time and the same holds, e.g., for safety and liveness properties given by recognizable sets of configurations.</div></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"148 \",\"pages\":\"Article 103601\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000024000965\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000024000965","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Backwards-reachability for cooperating multi-pushdown systems
A cooperating multi-pushdown system consists of a tuple of pushdown systems that can delegate the execution of recursive procedures to sub-tuples; control returns to the calling tuple once all sub-tuples finished their task. This allows the concurrent execution since disjoint sub-tuples can perform their task independently. Because of the concrete form of recursive descent into sub-tuples, the content of the multi-pushdown does not form an arbitrary tuple of words, but can be understood as a Mazurkiewicz trace. For such systems, we prove that the backwards reachability relation efficiently preserves recognizability, generalizing a result and proof technique by Bouajjani et al. for single-pushdown systems. It follows that the reachability relation is decidable for cooperating multi-pushdown systems in polynomial time and the same holds, e.g., for safety and liveness properties given by recognizable sets of configurations.
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.