香芹酚通过增加生物活性化合物的含量来维持枸杞的抗氧化能力

IF 6 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY LWT - Food Science and Technology Pub Date : 2024-11-15 DOI:10.1016/j.lwt.2024.117035
Junjie Wang , Lunaike Zhao , Wei Tian , Huaiyu Zhang , Peng Wang , Qi Zhan , Hongwei Fan , Xiao Yu
{"title":"香芹酚通过增加生物活性化合物的含量来维持枸杞的抗氧化能力","authors":"Junjie Wang ,&nbsp;Lunaike Zhao ,&nbsp;Wei Tian ,&nbsp;Huaiyu Zhang ,&nbsp;Peng Wang ,&nbsp;Qi Zhan ,&nbsp;Hongwei Fan ,&nbsp;Xiao Yu","doi":"10.1016/j.lwt.2024.117035","DOIUrl":null,"url":null,"abstract":"<div><div>Fresh goji berries are prone to decay and spoilage, resulting in economic losses. We investigated the effects of carvacrol (CVR) on the natural disease incidence and quality of goji berries by fumigating with varying CVR concentrations (0.06, 0.12, and 0.24 μL/mL). The results showed that CVR treatment inhibited the natural decay of goji berries by enhancing their quality, color, and total soluble solids/titratable acidity ratio. Moreover, 0.12 μL/mL CVR was determined to be the optimal concentration, as it maintained the sensory quality (except for aroma) and inhibited the disease incidence and preliminary disease expansion of goji fruit inoculated with <em>Alternaria alternata</em>. The treated berries exhibited elevated total phenolic content, total flavonoid content, ascorbic acid, glutathione, melatonin, total chlorophyll, and carotenoid levels. Higher hydrophilic and lipophilic total antioxidant activities and free radical scavenging capacities were also observed in the treated berries. Targeted metabolomics showed that treatment with 0.12 μL/mL CVR increased the levels of four phenolic acids (caffeic acid, chlorogenic acid, ferulic acid, and protocatechuic acid) and two flavonoids (naringenin and quercetin) in goji berries, thereby activating the gene expression of the phenylpropanoid metabolic pathway. In summary, CVR treatment delayed fruit senescence and the decline in fruit quality, promoted the accumulation of bioactive compounds, and improved antioxidant capacity and disease resistance by activating the phenylpropanoid metabolic pathway.</div></div>","PeriodicalId":382,"journal":{"name":"LWT - Food Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carvacrol maintains antioxidant capacity in goji fruit by increasing the content of bioactive compounds\",\"authors\":\"Junjie Wang ,&nbsp;Lunaike Zhao ,&nbsp;Wei Tian ,&nbsp;Huaiyu Zhang ,&nbsp;Peng Wang ,&nbsp;Qi Zhan ,&nbsp;Hongwei Fan ,&nbsp;Xiao Yu\",\"doi\":\"10.1016/j.lwt.2024.117035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fresh goji berries are prone to decay and spoilage, resulting in economic losses. We investigated the effects of carvacrol (CVR) on the natural disease incidence and quality of goji berries by fumigating with varying CVR concentrations (0.06, 0.12, and 0.24 μL/mL). The results showed that CVR treatment inhibited the natural decay of goji berries by enhancing their quality, color, and total soluble solids/titratable acidity ratio. Moreover, 0.12 μL/mL CVR was determined to be the optimal concentration, as it maintained the sensory quality (except for aroma) and inhibited the disease incidence and preliminary disease expansion of goji fruit inoculated with <em>Alternaria alternata</em>. The treated berries exhibited elevated total phenolic content, total flavonoid content, ascorbic acid, glutathione, melatonin, total chlorophyll, and carotenoid levels. Higher hydrophilic and lipophilic total antioxidant activities and free radical scavenging capacities were also observed in the treated berries. Targeted metabolomics showed that treatment with 0.12 μL/mL CVR increased the levels of four phenolic acids (caffeic acid, chlorogenic acid, ferulic acid, and protocatechuic acid) and two flavonoids (naringenin and quercetin) in goji berries, thereby activating the gene expression of the phenylpropanoid metabolic pathway. In summary, CVR treatment delayed fruit senescence and the decline in fruit quality, promoted the accumulation of bioactive compounds, and improved antioxidant capacity and disease resistance by activating the phenylpropanoid metabolic pathway.</div></div>\",\"PeriodicalId\":382,\"journal\":{\"name\":\"LWT - Food Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LWT - Food Science and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0023643824013185\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LWT - Food Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0023643824013185","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carvacrol maintains antioxidant capacity in goji fruit by increasing the content of bioactive compounds
Fresh goji berries are prone to decay and spoilage, resulting in economic losses. We investigated the effects of carvacrol (CVR) on the natural disease incidence and quality of goji berries by fumigating with varying CVR concentrations (0.06, 0.12, and 0.24 μL/mL). The results showed that CVR treatment inhibited the natural decay of goji berries by enhancing their quality, color, and total soluble solids/titratable acidity ratio. Moreover, 0.12 μL/mL CVR was determined to be the optimal concentration, as it maintained the sensory quality (except for aroma) and inhibited the disease incidence and preliminary disease expansion of goji fruit inoculated with Alternaria alternata. The treated berries exhibited elevated total phenolic content, total flavonoid content, ascorbic acid, glutathione, melatonin, total chlorophyll, and carotenoid levels. Higher hydrophilic and lipophilic total antioxidant activities and free radical scavenging capacities were also observed in the treated berries. Targeted metabolomics showed that treatment with 0.12 μL/mL CVR increased the levels of four phenolic acids (caffeic acid, chlorogenic acid, ferulic acid, and protocatechuic acid) and two flavonoids (naringenin and quercetin) in goji berries, thereby activating the gene expression of the phenylpropanoid metabolic pathway. In summary, CVR treatment delayed fruit senescence and the decline in fruit quality, promoted the accumulation of bioactive compounds, and improved antioxidant capacity and disease resistance by activating the phenylpropanoid metabolic pathway.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
LWT - Food Science and Technology
LWT - Food Science and Technology 工程技术-食品科技
CiteScore
11.80
自引率
6.70%
发文量
1724
审稿时长
65 days
期刊介绍: LWT - Food Science and Technology is an international journal that publishes innovative papers in the fields of food chemistry, biochemistry, microbiology, technology and nutrition. The work described should be innovative either in the approach or in the methods used. The significance of the results either for the science community or for the food industry must also be specified. Contributions written in English are welcomed in the form of review articles, short reviews, research papers, and research notes. Papers featuring animal trials and cell cultures are outside the scope of the journal and will not be considered for publication.
期刊最新文献
Metabolomic and transcriptomic analyses reveal the regulation mechanism of postharvest light-induced phenolics accumulation in mango peel Production of nattokinase and γ-polyglutamic acid via soybean whey fermentation by Bacillus subtilis BSNK-5 and their emulsification to form nanoemulsions Benchtop NMR spectroscopy for quantitative determination of milk fat and qualitative determination of lactose: From calibration curve to deep learning Carvacrol maintains antioxidant capacity in goji fruit by increasing the content of bioactive compounds Physicochemical characterization of thermally oxidized rapeseed oil: An insight into combining acoustic diagnostic technique and chemometrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1