Shifa Shoukat , Tianhan Gao , Danish Javeed , Muhammad Shahid Saeed , Muhammad Adil
{"title":"相信我的 IDS:基于深度学习的可解释人工智能集成工业网络透明威胁检测系统","authors":"Shifa Shoukat , Tianhan Gao , Danish Javeed , Muhammad Shahid Saeed , Muhammad Adil","doi":"10.1016/j.cose.2024.104191","DOIUrl":null,"url":null,"abstract":"<div><div>Industrial networks are vulnerable to various cyber threats that can compromise their Confidentiality, Integrity, and Availability (CIA). To counter the increasing frequency of such threats, we designed and developed an Explainable Artificial Intelligence (XAI) integrated Deep Learning (DL)-based threat detection system (XDLTDS). We first employ a Long-Short Term Memory-AutoEncoder (LSTM-AE) to encode IIoT data and mitigate inference attacks. Then, we introduce an Attention-based Gated Recurrent Unit (AGRU) with softmax for multiclass threat classification in IIoT networks. To address the black-box nature of DL-based IDS, we use the Shapley Additive Explanations (SHAP) mechanism to provide transparency and trust for the system’s decisions. This interpretation helps SOC analysts understand why specific events are flagged as malicious by the XDLTDS framework. Our approach reduces the risk of sensitive data and reputation loss. We also present a Software-Defined Networking (SDN)-based deployment architecture for the XDLTDS framework. Extensive experiments with the N-BaIoT, Edge-IIoTset, and CIC-IDS2017 datasets confirm the effectiveness of XDLTDS against existing frameworks in addressing modern cybersecurity challenges and protecting industrial networks.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"149 ","pages":"Article 104191"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trust my IDS: An explainable AI integrated deep learning-based transparent threat detection system for industrial networks\",\"authors\":\"Shifa Shoukat , Tianhan Gao , Danish Javeed , Muhammad Shahid Saeed , Muhammad Adil\",\"doi\":\"10.1016/j.cose.2024.104191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Industrial networks are vulnerable to various cyber threats that can compromise their Confidentiality, Integrity, and Availability (CIA). To counter the increasing frequency of such threats, we designed and developed an Explainable Artificial Intelligence (XAI) integrated Deep Learning (DL)-based threat detection system (XDLTDS). We first employ a Long-Short Term Memory-AutoEncoder (LSTM-AE) to encode IIoT data and mitigate inference attacks. Then, we introduce an Attention-based Gated Recurrent Unit (AGRU) with softmax for multiclass threat classification in IIoT networks. To address the black-box nature of DL-based IDS, we use the Shapley Additive Explanations (SHAP) mechanism to provide transparency and trust for the system’s decisions. This interpretation helps SOC analysts understand why specific events are flagged as malicious by the XDLTDS framework. Our approach reduces the risk of sensitive data and reputation loss. We also present a Software-Defined Networking (SDN)-based deployment architecture for the XDLTDS framework. Extensive experiments with the N-BaIoT, Edge-IIoTset, and CIC-IDS2017 datasets confirm the effectiveness of XDLTDS against existing frameworks in addressing modern cybersecurity challenges and protecting industrial networks.</div></div>\",\"PeriodicalId\":51004,\"journal\":{\"name\":\"Computers & Security\",\"volume\":\"149 \",\"pages\":\"Article 104191\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167404824004966\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824004966","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Trust my IDS: An explainable AI integrated deep learning-based transparent threat detection system for industrial networks
Industrial networks are vulnerable to various cyber threats that can compromise their Confidentiality, Integrity, and Availability (CIA). To counter the increasing frequency of such threats, we designed and developed an Explainable Artificial Intelligence (XAI) integrated Deep Learning (DL)-based threat detection system (XDLTDS). We first employ a Long-Short Term Memory-AutoEncoder (LSTM-AE) to encode IIoT data and mitigate inference attacks. Then, we introduce an Attention-based Gated Recurrent Unit (AGRU) with softmax for multiclass threat classification in IIoT networks. To address the black-box nature of DL-based IDS, we use the Shapley Additive Explanations (SHAP) mechanism to provide transparency and trust for the system’s decisions. This interpretation helps SOC analysts understand why specific events are flagged as malicious by the XDLTDS framework. Our approach reduces the risk of sensitive data and reputation loss. We also present a Software-Defined Networking (SDN)-based deployment architecture for the XDLTDS framework. Extensive experiments with the N-BaIoT, Edge-IIoTset, and CIC-IDS2017 datasets confirm the effectiveness of XDLTDS against existing frameworks in addressing modern cybersecurity challenges and protecting industrial networks.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.