Zongyou Ben , Xiao Sun , Yu Bai , Duoxing Yang , Yan Dong , Kunjie Chen
{"title":"研究面筋的致密化过程和构成模型","authors":"Zongyou Ben , Xiao Sun , Yu Bai , Duoxing Yang , Yan Dong , Kunjie Chen","doi":"10.1016/j.jfoodeng.2024.112326","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to investigate the single-die compression process of gluten and formulate a constitutive model. Regression models were established between indicators and significant factors with single-factor and response surface tests. The optimal parameter combination was a moisture content of 7.441%, compression speed of 0.146 mm s<sup>−1</sup>, and compression load of 1.75 kN. The relative error between each indicator's experimental and predicted values was less than 2.866%. Rheological modeling of the densification forming and stress relaxation stages was carried out using the optimal parameters. The results showed that a piecewise nonlinear elastic-viscoplastic model effectively described the gluten densification process, with a relative error between experimental and predicted values of less than 3.428%. The five-element generalized Maxwell model (R<sup>2</sup> = 0.997) was more suitable for characterizing the stress relaxation of gluten densification.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"387 ","pages":"Article 112326"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the densification process and constitutive model of gluten\",\"authors\":\"Zongyou Ben , Xiao Sun , Yu Bai , Duoxing Yang , Yan Dong , Kunjie Chen\",\"doi\":\"10.1016/j.jfoodeng.2024.112326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aimed to investigate the single-die compression process of gluten and formulate a constitutive model. Regression models were established between indicators and significant factors with single-factor and response surface tests. The optimal parameter combination was a moisture content of 7.441%, compression speed of 0.146 mm s<sup>−1</sup>, and compression load of 1.75 kN. The relative error between each indicator's experimental and predicted values was less than 2.866%. Rheological modeling of the densification forming and stress relaxation stages was carried out using the optimal parameters. The results showed that a piecewise nonlinear elastic-viscoplastic model effectively described the gluten densification process, with a relative error between experimental and predicted values of less than 3.428%. The five-element generalized Maxwell model (R<sup>2</sup> = 0.997) was more suitable for characterizing the stress relaxation of gluten densification.</div></div>\",\"PeriodicalId\":359,\"journal\":{\"name\":\"Journal of Food Engineering\",\"volume\":\"387 \",\"pages\":\"Article 112326\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0260877424003923\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877424003923","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Research on the densification process and constitutive model of gluten
This study aimed to investigate the single-die compression process of gluten and formulate a constitutive model. Regression models were established between indicators and significant factors with single-factor and response surface tests. The optimal parameter combination was a moisture content of 7.441%, compression speed of 0.146 mm s−1, and compression load of 1.75 kN. The relative error between each indicator's experimental and predicted values was less than 2.866%. Rheological modeling of the densification forming and stress relaxation stages was carried out using the optimal parameters. The results showed that a piecewise nonlinear elastic-viscoplastic model effectively described the gluten densification process, with a relative error between experimental and predicted values of less than 3.428%. The five-element generalized Maxwell model (R2 = 0.997) was more suitable for characterizing the stress relaxation of gluten densification.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.