Mukhtiar Hussain , Ashraf M.M. Abdelbacki , Muhammad Saleem , Muhammad Aslam , Mahmood Ali
{"title":"通过水热法制备 NbTe2@rGO 纳米片,实现经济高效的超级电容器电极","authors":"Mukhtiar Hussain , Ashraf M.M. Abdelbacki , Muhammad Saleem , Muhammad Aslam , Mahmood Ali","doi":"10.1016/j.jpcs.2024.112354","DOIUrl":null,"url":null,"abstract":"<div><div>The expansion of energy storage devices with extensive stability and high energy density is a crucial area of research that requires immediate attention. In light of these requirements, it was worth noting that supercapacitor (SC<sub>s</sub>) exhibit great potential as viable options for achieving these demands. Supercapacitor (SC<sub>s</sub>) despite their potential currently exhibit energy density levels that fall short of the necessary threshold for long-term applications. This limitation primarily stems from the challenge of identifying the ideal materials to enhance their performance. However, transition metal tellurides have a well-studied group of materials that have garnered noticeable consideration because of high energy density. Herein, we present a novel hydrothermal method that involves the fabrication of reduced graphene oxide (rGO) nanosheet combined with niobium telluride (NbTe<sub>2</sub>) material. However, the NbTe<sub>2</sub>@rGO nanohybrid's specific capacitance (C<sub>sp</sub>) was 1475 F g<sup>−1</sup>, which was approximately twice as high as the specific capacitance of the NbTe<sub>2</sub> (667 F g<sup>−1</sup>) electrode with a specific capacity of 826 C/g at 1 A g<sup>−1</sup> which could be ascribed to interconnection between nanoparticles and nanosheets in the NbTe<sub>2</sub>@rGO nanohybrid with lower R<sub>ct</sub> = 0.02 Ω and outstanding cycling stability even after undergoing 7000th cycles with a capacitance retention of (97 %). The NbTe<sub>2</sub>@rGO nanohybrid demonstrated an impressive power density of 285 W kg<sup>−1</sup> and energy density of 22 Wh kg<sup>−1</sup> at 1 A g<sup>−1</sup> in its symmetric two-electrode performance. The findings of this investigation suggested that NbTe<sub>2</sub>@rGO nanohybrid exhibits promising material for future energy storing devices.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112354"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of NbTe2@rGO nanosheet by hydrothermal route for cost-effective supercapacitor electrode\",\"authors\":\"Mukhtiar Hussain , Ashraf M.M. Abdelbacki , Muhammad Saleem , Muhammad Aslam , Mahmood Ali\",\"doi\":\"10.1016/j.jpcs.2024.112354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The expansion of energy storage devices with extensive stability and high energy density is a crucial area of research that requires immediate attention. In light of these requirements, it was worth noting that supercapacitor (SC<sub>s</sub>) exhibit great potential as viable options for achieving these demands. Supercapacitor (SC<sub>s</sub>) despite their potential currently exhibit energy density levels that fall short of the necessary threshold for long-term applications. This limitation primarily stems from the challenge of identifying the ideal materials to enhance their performance. However, transition metal tellurides have a well-studied group of materials that have garnered noticeable consideration because of high energy density. Herein, we present a novel hydrothermal method that involves the fabrication of reduced graphene oxide (rGO) nanosheet combined with niobium telluride (NbTe<sub>2</sub>) material. However, the NbTe<sub>2</sub>@rGO nanohybrid's specific capacitance (C<sub>sp</sub>) was 1475 F g<sup>−1</sup>, which was approximately twice as high as the specific capacitance of the NbTe<sub>2</sub> (667 F g<sup>−1</sup>) electrode with a specific capacity of 826 C/g at 1 A g<sup>−1</sup> which could be ascribed to interconnection between nanoparticles and nanosheets in the NbTe<sub>2</sub>@rGO nanohybrid with lower R<sub>ct</sub> = 0.02 Ω and outstanding cycling stability even after undergoing 7000th cycles with a capacitance retention of (97 %). The NbTe<sub>2</sub>@rGO nanohybrid demonstrated an impressive power density of 285 W kg<sup>−1</sup> and energy density of 22 Wh kg<sup>−1</sup> at 1 A g<sup>−1</sup> in its symmetric two-electrode performance. The findings of this investigation suggested that NbTe<sub>2</sub>@rGO nanohybrid exhibits promising material for future energy storing devices.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"196 \",\"pages\":\"Article 112354\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002236972400489X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002236972400489X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
扩大具有广泛稳定性和高能量密度的储能设备是一个需要立即关注的重要研究领域。鉴于这些要求,值得注意的是,超级电容器(SC)作为实现这些要求的可行选择,展现出巨大的潜力。超级电容器(SC)尽管潜力巨大,但目前表现出的能量密度水平还达不到长期应用的必要门槛。这种局限性主要源于如何找到理想的材料来提高其性能。然而,过渡金属碲化物是一组经过深入研究的材料,因其能量密度高而备受关注。在本文中,我们介绍了一种新型水热法,该方法涉及还原氧化石墨烯(rGO)纳米片与碲化铌(NbTe2)材料的结合制造。然而,NbTe2@rGO 纳米杂化材料的比电容(Csp)为 1475 F g-1,约为 NbTe2(667 F g-1)电极比电容的两倍,而 NbTe2@rGO 纳米杂化材料在 1 A g-1 时的比电容为 826 C/g。02 Ω,并且具有出色的循环稳定性,即使在经历 7000 次循环后,电容保持率仍高达 97%。NbTe2@rGO 纳米混合电池在 1 A g-1 的对称双电极性能条件下,功率密度达到了惊人的 285 W kg-1,能量密度达到了 22 Wh kg-1。这项研究结果表明,NbTe2@rGO 纳米杂化材料有望成为未来的储能设备材料。
Fabrication of NbTe2@rGO nanosheet by hydrothermal route for cost-effective supercapacitor electrode
The expansion of energy storage devices with extensive stability and high energy density is a crucial area of research that requires immediate attention. In light of these requirements, it was worth noting that supercapacitor (SCs) exhibit great potential as viable options for achieving these demands. Supercapacitor (SCs) despite their potential currently exhibit energy density levels that fall short of the necessary threshold for long-term applications. This limitation primarily stems from the challenge of identifying the ideal materials to enhance their performance. However, transition metal tellurides have a well-studied group of materials that have garnered noticeable consideration because of high energy density. Herein, we present a novel hydrothermal method that involves the fabrication of reduced graphene oxide (rGO) nanosheet combined with niobium telluride (NbTe2) material. However, the NbTe2@rGO nanohybrid's specific capacitance (Csp) was 1475 F g−1, which was approximately twice as high as the specific capacitance of the NbTe2 (667 F g−1) electrode with a specific capacity of 826 C/g at 1 A g−1 which could be ascribed to interconnection between nanoparticles and nanosheets in the NbTe2@rGO nanohybrid with lower Rct = 0.02 Ω and outstanding cycling stability even after undergoing 7000th cycles with a capacitance retention of (97 %). The NbTe2@rGO nanohybrid demonstrated an impressive power density of 285 W kg−1 and energy density of 22 Wh kg−1 at 1 A g−1 in its symmetric two-electrode performance. The findings of this investigation suggested that NbTe2@rGO nanohybrid exhibits promising material for future energy storing devices.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.