用于燃料价格预测的粒子群优化调整多头长短期记忆网络方法

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Network and Computer Applications Pub Date : 2024-11-07 DOI:10.1016/j.jnca.2024.104048
Andjela Jovanovic , Luka Jovanovic , Miodrag Zivkovic , Nebojsa Bacanin , Vladimir Simic , Dragan Pamucar , Milos Antonijevic
{"title":"用于燃料价格预测的粒子群优化调整多头长短期记忆网络方法","authors":"Andjela Jovanovic ,&nbsp;Luka Jovanovic ,&nbsp;Miodrag Zivkovic ,&nbsp;Nebojsa Bacanin ,&nbsp;Vladimir Simic ,&nbsp;Dragan Pamucar ,&nbsp;Milos Antonijevic","doi":"10.1016/j.jnca.2024.104048","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing global energy demands and decreasing stocks of fossil fuels have led to a resurgence of research into energy forecasting. Artificial intelligence, explicitly time series forecasting holds great potential to improve predictions of cost and demand with many lucrative applications across several fields. Many factors influence prices on a global scale, from socio-economic factors to distribution, availability, and international policy. Also, various factors need to be considered in order to make an accurate forecast. By analyzing the current literature, a gap for improvements within this domain exists. Therefore, this work suggests and explores the potential of multi-headed long short-term memory models for gasoline price forecasting, since this issue was not tackled with multi-headed models before. Additionally, since the computational requirements for such models are relatively high, work focuses on lightweight approaches that consist of a relatively low number of neurons per layer, trained in a small number of epochs. However, as algorithm performance can be heavily dependent on appropriate hyper-parameter selections, a modified variant of the particle swarm optimization algorithm is also set forth to help in optimizing the model’s architecture and training parameters. A comparative analysis is conducted using energy data collected from multiple public sources between several contemporary optimizers. The outcomes are put through a meticulous statistical validation to ascertain the significance of the findings. The best-constructed models attained a mean square error of just 0.044025 with an R-squared of 0.911797, suggesting potential for real-world use.</div></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"233 ","pages":"Article 104048"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle swarm optimization tuned multi-headed long short-term memory networks approach for fuel prices forecasting\",\"authors\":\"Andjela Jovanovic ,&nbsp;Luka Jovanovic ,&nbsp;Miodrag Zivkovic ,&nbsp;Nebojsa Bacanin ,&nbsp;Vladimir Simic ,&nbsp;Dragan Pamucar ,&nbsp;Milos Antonijevic\",\"doi\":\"10.1016/j.jnca.2024.104048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Increasing global energy demands and decreasing stocks of fossil fuels have led to a resurgence of research into energy forecasting. Artificial intelligence, explicitly time series forecasting holds great potential to improve predictions of cost and demand with many lucrative applications across several fields. Many factors influence prices on a global scale, from socio-economic factors to distribution, availability, and international policy. Also, various factors need to be considered in order to make an accurate forecast. By analyzing the current literature, a gap for improvements within this domain exists. Therefore, this work suggests and explores the potential of multi-headed long short-term memory models for gasoline price forecasting, since this issue was not tackled with multi-headed models before. Additionally, since the computational requirements for such models are relatively high, work focuses on lightweight approaches that consist of a relatively low number of neurons per layer, trained in a small number of epochs. However, as algorithm performance can be heavily dependent on appropriate hyper-parameter selections, a modified variant of the particle swarm optimization algorithm is also set forth to help in optimizing the model’s architecture and training parameters. A comparative analysis is conducted using energy data collected from multiple public sources between several contemporary optimizers. The outcomes are put through a meticulous statistical validation to ascertain the significance of the findings. The best-constructed models attained a mean square error of just 0.044025 with an R-squared of 0.911797, suggesting potential for real-world use.</div></div>\",\"PeriodicalId\":54784,\"journal\":{\"name\":\"Journal of Network and Computer Applications\",\"volume\":\"233 \",\"pages\":\"Article 104048\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Computer Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S108480452400225X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S108480452400225X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

全球能源需求的不断增长和化石燃料存量的不断减少,促使能源预测研究再度兴起。人工智能、明确的时间序列预测在改善成本和需求预测方面具有巨大潜力,在多个领域都有许多利润丰厚的应用。影响全球价格的因素很多,从社会经济因素到分配、供应和国际政策。此外,为了做出准确的预测,还需要考虑各种因素。通过对现有文献的分析,这一领域还存在有待改进的地方。因此,本研究建议并探索多头长期短期记忆模型在汽油价格预测中的应用潜力,因为在此之前并没有使用多头模型来解决这一问题。此外,由于此类模型的计算要求相对较高,因此工作重点放在轻量级方法上,即每层神经元数量相对较少,并在少量的历时中进行训练。不过,由于算法性能在很大程度上取决于适当的超参数选择,因此还提出了粒子群优化算法的改进变体,以帮助优化模型的架构和训练参数。利用从多个公共资源收集到的能源数据,对多个当代优化器进行了比较分析。对结果进行了细致的统计验证,以确定研究结果的重要性。构建的最佳模型的均方误差仅为 0.044025,R 方为 0.911797,这表明该模型在现实世界中具有使用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Particle swarm optimization tuned multi-headed long short-term memory networks approach for fuel prices forecasting
Increasing global energy demands and decreasing stocks of fossil fuels have led to a resurgence of research into energy forecasting. Artificial intelligence, explicitly time series forecasting holds great potential to improve predictions of cost and demand with many lucrative applications across several fields. Many factors influence prices on a global scale, from socio-economic factors to distribution, availability, and international policy. Also, various factors need to be considered in order to make an accurate forecast. By analyzing the current literature, a gap for improvements within this domain exists. Therefore, this work suggests and explores the potential of multi-headed long short-term memory models for gasoline price forecasting, since this issue was not tackled with multi-headed models before. Additionally, since the computational requirements for such models are relatively high, work focuses on lightweight approaches that consist of a relatively low number of neurons per layer, trained in a small number of epochs. However, as algorithm performance can be heavily dependent on appropriate hyper-parameter selections, a modified variant of the particle swarm optimization algorithm is also set forth to help in optimizing the model’s architecture and training parameters. A comparative analysis is conducted using energy data collected from multiple public sources between several contemporary optimizers. The outcomes are put through a meticulous statistical validation to ascertain the significance of the findings. The best-constructed models attained a mean square error of just 0.044025 with an R-squared of 0.911797, suggesting potential for real-world use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Network and Computer Applications
Journal of Network and Computer Applications 工程技术-计算机:跨学科应用
CiteScore
21.50
自引率
3.40%
发文量
142
审稿时长
37 days
期刊介绍: The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.
期刊最新文献
SAT-Net: A staggered attention network using graph neural networks for encrypted traffic classification Editorial Board Particle swarm optimization tuned multi-headed long short-term memory networks approach for fuel prices forecasting FCG-MFD: Benchmark function call graph-based dataset for malware family detection Deep learning frameworks for cognitive radio networks: Review and open research challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1