碳材料的脉冲等离子气相沉积:优势与挑战

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-11-02 DOI:10.1016/j.carbon.2024.119772
Carles Corbella , Asim Aijaz , Tomas Kubart , Li Lin , Sabine Portal , Michael Keidar
{"title":"碳材料的脉冲等离子气相沉积:优势与挑战","authors":"Carles Corbella ,&nbsp;Asim Aijaz ,&nbsp;Tomas Kubart ,&nbsp;Li Lin ,&nbsp;Sabine Portal ,&nbsp;Michael Keidar","doi":"10.1016/j.carbon.2024.119772","DOIUrl":null,"url":null,"abstract":"<div><div>Here, we review the benefits of low-temperature pulsed plasma technology on the synthesis of amorphous and diamond-like carbon (DLC) films, nanocrystalline diamond (NCD) films, and carbon nanomaterials, such as graphene and carbon nanotubes. Physical and chemical vapour depositions of strong carbon materials are dominated in industry by magnetron sputtering and vacuum arc. At research stage, carbon deposition can be accomplished by many techniques involving pulsed discharges in vacuum or atmospheric pressure. Either by pulsed-DC glow discharge, high-power impulse magnetron sputtering (HiPIMS), filtered cathodic vacuum arc (FCVA), or anodic arc discharge, the structural and mechanical properties of carbon-based samples can be tailored by adequately adjusting “plasma knobs”, namely peak power, pulse duration, and duty cycle. Milestones such as tuning surface properties via ion bombardment, enhancing plasma ionisation through energetic pulses, and stabilization of plasma processes for industrial implementation, are discussed. Also, pulsed plasma technology arises as an excellent laboratory to train machine learning algorithms thanks to the large variety of material properties. In conclusion, nonequilibrium plasmas operated with pulsed power provide exciting opportunities for (1) fabrication of new carbon architectures with desired functional properties for many applications, and (2) advancing our knowledge on carbon plasma chemistry via artificial intelligence resources.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pulsed plasma vapour deposition of carbon materials: Advantages and challenges\",\"authors\":\"Carles Corbella ,&nbsp;Asim Aijaz ,&nbsp;Tomas Kubart ,&nbsp;Li Lin ,&nbsp;Sabine Portal ,&nbsp;Michael Keidar\",\"doi\":\"10.1016/j.carbon.2024.119772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Here, we review the benefits of low-temperature pulsed plasma technology on the synthesis of amorphous and diamond-like carbon (DLC) films, nanocrystalline diamond (NCD) films, and carbon nanomaterials, such as graphene and carbon nanotubes. Physical and chemical vapour depositions of strong carbon materials are dominated in industry by magnetron sputtering and vacuum arc. At research stage, carbon deposition can be accomplished by many techniques involving pulsed discharges in vacuum or atmospheric pressure. Either by pulsed-DC glow discharge, high-power impulse magnetron sputtering (HiPIMS), filtered cathodic vacuum arc (FCVA), or anodic arc discharge, the structural and mechanical properties of carbon-based samples can be tailored by adequately adjusting “plasma knobs”, namely peak power, pulse duration, and duty cycle. Milestones such as tuning surface properties via ion bombardment, enhancing plasma ionisation through energetic pulses, and stabilization of plasma processes for industrial implementation, are discussed. Also, pulsed plasma technology arises as an excellent laboratory to train machine learning algorithms thanks to the large variety of material properties. In conclusion, nonequilibrium plasmas operated with pulsed power provide exciting opportunities for (1) fabrication of new carbon architectures with desired functional properties for many applications, and (2) advancing our knowledge on carbon plasma chemistry via artificial intelligence resources.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622324009916\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324009916","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pulsed plasma vapour deposition of carbon materials: Advantages and challenges
Here, we review the benefits of low-temperature pulsed plasma technology on the synthesis of amorphous and diamond-like carbon (DLC) films, nanocrystalline diamond (NCD) films, and carbon nanomaterials, such as graphene and carbon nanotubes. Physical and chemical vapour depositions of strong carbon materials are dominated in industry by magnetron sputtering and vacuum arc. At research stage, carbon deposition can be accomplished by many techniques involving pulsed discharges in vacuum or atmospheric pressure. Either by pulsed-DC glow discharge, high-power impulse magnetron sputtering (HiPIMS), filtered cathodic vacuum arc (FCVA), or anodic arc discharge, the structural and mechanical properties of carbon-based samples can be tailored by adequately adjusting “plasma knobs”, namely peak power, pulse duration, and duty cycle. Milestones such as tuning surface properties via ion bombardment, enhancing plasma ionisation through energetic pulses, and stabilization of plasma processes for industrial implementation, are discussed. Also, pulsed plasma technology arises as an excellent laboratory to train machine learning algorithms thanks to the large variety of material properties. In conclusion, nonequilibrium plasmas operated with pulsed power provide exciting opportunities for (1) fabrication of new carbon architectures with desired functional properties for many applications, and (2) advancing our knowledge on carbon plasma chemistry via artificial intelligence resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Novel ultralight carbon foam reinforced carbon aerogel composites with low volume shrinkage and excellent thermal insulation performance Synergistic NH2-MIL-88B/Ta4C3TX/graphene aerogels for sustainable wastewater treatment and thermal energy storage MXene-CNTs/Co dielectric-electromagnetic synergistic composites with multi-heterogeneous interfaces for microwave absorption Hierarchical core-shell transitional metal chalcogenides Co9S8/ CoSe2@C nanocube embedded into porous carbon for tunable and efficient microwave absorption Coating carbon cloth with Cu3Se2 by electrodeposition for pressure sensing and enhanced EMI shielding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1