具有优异电磁波吸收性能的形状可调硒化钒/还原氧化石墨烯复合材料

IF 11.6 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-11-02 DOI:10.1016/j.carbon.2024.119795
Guansheng Ma , Yuhao Liu , Kaili Zhang , Guangyu Qin , Yuefeng Yan , Tao Zhang , Xiaoxiao Huang
{"title":"具有优异电磁波吸收性能的形状可调硒化钒/还原氧化石墨烯复合材料","authors":"Guansheng Ma ,&nbsp;Yuhao Liu ,&nbsp;Kaili Zhang ,&nbsp;Guangyu Qin ,&nbsp;Yuefeng Yan ,&nbsp;Tao Zhang ,&nbsp;Xiaoxiao Huang","doi":"10.1016/j.carbon.2024.119795","DOIUrl":null,"url":null,"abstract":"<div><div>The tunable energy gap and distinctive layered configuration of transition metal dichalcogenides (TMDs) has sparked considerable interest in their capabilities for electromagnetic wave absorption. As a significant TMD, vanadium selenide (VSe<sub>2</sub>) is characterized by a superior electrical conductivity (1 × 10<sup>−3</sup> S/m) and an expanded interlayer distance, which are advantageous for electromagnetic wave absorption performance. Nevertheless, the current research on VSe<sub>2</sub> in electromagnetic wave absorption is relatively limited. In this study, flower-like VSe<sub>2</sub> and shape-tunable VSe<sub>2</sub>/reduced graphene oxide (rGO) composites were fabricated via a simple solvothermal method, and the effect of their morphology on electromagnetic wave absorption performances was investigated. The VSe<sub>2</sub>/rGO composites exhibited remarkable electromagnetic wave absorption properties at a thickness of 2.01 mm, with a reflection loss value (RL) of up to −79.50 dB, and an effective absorption bandwidth (EAB) of 5.2 GHz (1.45 mm). This research has identified a novel approach to the study of TMDs in the field of electromagnetic wave absorption.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"232 ","pages":"Article 119795"},"PeriodicalIF":11.6000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape-tunable vanadium selenide/reduced graphene oxide composites with excellent electromagnetic wave absorption performance\",\"authors\":\"Guansheng Ma ,&nbsp;Yuhao Liu ,&nbsp;Kaili Zhang ,&nbsp;Guangyu Qin ,&nbsp;Yuefeng Yan ,&nbsp;Tao Zhang ,&nbsp;Xiaoxiao Huang\",\"doi\":\"10.1016/j.carbon.2024.119795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The tunable energy gap and distinctive layered configuration of transition metal dichalcogenides (TMDs) has sparked considerable interest in their capabilities for electromagnetic wave absorption. As a significant TMD, vanadium selenide (VSe<sub>2</sub>) is characterized by a superior electrical conductivity (1 × 10<sup>−3</sup> S/m) and an expanded interlayer distance, which are advantageous for electromagnetic wave absorption performance. Nevertheless, the current research on VSe<sub>2</sub> in electromagnetic wave absorption is relatively limited. In this study, flower-like VSe<sub>2</sub> and shape-tunable VSe<sub>2</sub>/reduced graphene oxide (rGO) composites were fabricated via a simple solvothermal method, and the effect of their morphology on electromagnetic wave absorption performances was investigated. The VSe<sub>2</sub>/rGO composites exhibited remarkable electromagnetic wave absorption properties at a thickness of 2.01 mm, with a reflection loss value (RL) of up to −79.50 dB, and an effective absorption bandwidth (EAB) of 5.2 GHz (1.45 mm). This research has identified a novel approach to the study of TMDs in the field of electromagnetic wave absorption.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"232 \",\"pages\":\"Article 119795\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622324010145\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324010145","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属二掺杂化合物(TMDs)的可调能隙和独特的层状构造引发了人们对其电磁波吸收能力的浓厚兴趣。作为一种重要的 TMD,硒化钒(VSe2)具有优异的导电性(1 × 10-3 S/m)和更宽的层间距,这对电磁波吸收性能非常有利。然而,目前关于 VSe2 在电磁波吸收方面的研究还相对有限。本研究通过简单的溶热法制备了花状 VSe2 和形状可调的 VSe2/还原氧化石墨烯(rGO)复合材料,并研究了其形态对电磁波吸收性能的影响。VSe2/rGO 复合材料在厚度为 2.01 mm 时具有显著的电磁波吸收特性,反射损耗值 (RL) 高达 -79.50 dB,有效吸收带宽 (EAB) 为 5.2 GHz (1.45 mm)。这项研究为在电磁波吸收领域研究 TMD 确定了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shape-tunable vanadium selenide/reduced graphene oxide composites with excellent electromagnetic wave absorption performance
The tunable energy gap and distinctive layered configuration of transition metal dichalcogenides (TMDs) has sparked considerable interest in their capabilities for electromagnetic wave absorption. As a significant TMD, vanadium selenide (VSe2) is characterized by a superior electrical conductivity (1 × 10−3 S/m) and an expanded interlayer distance, which are advantageous for electromagnetic wave absorption performance. Nevertheless, the current research on VSe2 in electromagnetic wave absorption is relatively limited. In this study, flower-like VSe2 and shape-tunable VSe2/reduced graphene oxide (rGO) composites were fabricated via a simple solvothermal method, and the effect of their morphology on electromagnetic wave absorption performances was investigated. The VSe2/rGO composites exhibited remarkable electromagnetic wave absorption properties at a thickness of 2.01 mm, with a reflection loss value (RL) of up to −79.50 dB, and an effective absorption bandwidth (EAB) of 5.2 GHz (1.45 mm). This research has identified a novel approach to the study of TMDs in the field of electromagnetic wave absorption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Designing multiscale integration of hierarchical gradient heterostructures for enhanced electromagnetic protection performance Carbon-based nanoscale wave emitters for controlled energy transfer and signal manipulation Microemulsion-mediated synthesis of graphdiyne with hollow nanosphere and nanoflower architecture Monitoring the hydrothermal carbonization of biomass derived compounds by in-situ high-temperature-high-pressure Raman spectroscopy Amido-tailored self-template with internal porosity and self-doping toward N-doped porous carbons scaffold for silane deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1