CF-SOLT:利用基于相关滤波器的跟踪技术实时准确地检测交通事故

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Image and Vision Computing Pub Date : 2024-11-14 DOI:10.1016/j.imavis.2024.105336
Yingjie Xia , Nan Qian , Lin Guo , Zheming Cai
{"title":"CF-SOLT:利用基于相关滤波器的跟踪技术实时准确地检测交通事故","authors":"Yingjie Xia ,&nbsp;Nan Qian ,&nbsp;Lin Guo ,&nbsp;Zheming Cai","doi":"10.1016/j.imavis.2024.105336","DOIUrl":null,"url":null,"abstract":"<div><div>Traffic accident detection using video surveillance is valuable research work in intelligent transportation systems. It is useful for responding to traffic accidents promptly that can avoid traffic jam or prevent secondary accident. In traffic accident detection, tracking occluded vehicles in real-time and accurately is one of the major sticking points for practical applications. In order to improve the tracking of occluded vehicles for traffic accident detection, this paper proposes a simple online tracking scheme with correlation filters (CF-SOLT). The CF-SOLT method utilizes a correlation filter-based auxiliary tracker to assist the main tracker. This auxiliary tracker helps prevent target ID switching caused by occlusion, enabling accurate vehicle tracking in occluded scenes. Based on the tracking results, a precise traffic accident detection algorithm is developed by integrating behavior analysis of both vehicles and pedestrians. The improved accident detection algorithm with the correlation filter-based auxiliary tracker can provide shorter response time, enabling quick identification and detection of traffic accidents. The experiments are conducted on the VisDrone2019, MOT-Traffic and Dataset of accident to evaluate the performances metrics of MOTA, IDF1, FPS, precision, response time and others. The results show that CF-SOLT improves MOTA and IDF1 by 5.3% and 6.7%, accident detection precision by 25%, and reduces response time by 56 s.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"152 ","pages":"Article 105336"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CF-SOLT: Real-time and accurate traffic accident detection using correlation filter-based tracking\",\"authors\":\"Yingjie Xia ,&nbsp;Nan Qian ,&nbsp;Lin Guo ,&nbsp;Zheming Cai\",\"doi\":\"10.1016/j.imavis.2024.105336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traffic accident detection using video surveillance is valuable research work in intelligent transportation systems. It is useful for responding to traffic accidents promptly that can avoid traffic jam or prevent secondary accident. In traffic accident detection, tracking occluded vehicles in real-time and accurately is one of the major sticking points for practical applications. In order to improve the tracking of occluded vehicles for traffic accident detection, this paper proposes a simple online tracking scheme with correlation filters (CF-SOLT). The CF-SOLT method utilizes a correlation filter-based auxiliary tracker to assist the main tracker. This auxiliary tracker helps prevent target ID switching caused by occlusion, enabling accurate vehicle tracking in occluded scenes. Based on the tracking results, a precise traffic accident detection algorithm is developed by integrating behavior analysis of both vehicles and pedestrians. The improved accident detection algorithm with the correlation filter-based auxiliary tracker can provide shorter response time, enabling quick identification and detection of traffic accidents. The experiments are conducted on the VisDrone2019, MOT-Traffic and Dataset of accident to evaluate the performances metrics of MOTA, IDF1, FPS, precision, response time and others. The results show that CF-SOLT improves MOTA and IDF1 by 5.3% and 6.7%, accident detection precision by 25%, and reduces response time by 56 s.</div></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"152 \",\"pages\":\"Article 105336\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885624004414\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624004414","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

利用视频监控进行交通事故检测是智能交通系统中一项有价值的研究工作。它有助于及时应对交通事故,避免交通堵塞或防止二次事故的发生。在交通事故检测中,实时、准确地跟踪隐蔽车辆是实际应用中的一大难点。为了提高交通事故检测中对隐蔽车辆的跟踪能力,本文提出了一种简单的相关滤波器在线跟踪方案(CF-SOLT)。CF-SOLT 方法利用基于相关滤波器的辅助跟踪器来辅助主跟踪器。该辅助跟踪器有助于防止遮挡导致的目标 ID 切换,从而在遮挡场景中实现精确的车辆跟踪。在跟踪结果的基础上,通过整合车辆和行人的行为分析,开发了一种精确的交通事故检测算法。改进后的事故检测算法采用基于相关滤波器的辅助跟踪器,可以缩短响应时间,实现交通事故的快速识别和检测。实验在 VisDrone2019、MOT-Traffic 和事故数据集上进行,评估了 MOTA、IDF1、FPS、精度、响应时间等性能指标。结果表明,CF-SOLT 的 MOTA 和 IDF1 分别提高了 5.3% 和 6.7%,事故检测精度提高了 25%,响应时间缩短了 56 秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CF-SOLT: Real-time and accurate traffic accident detection using correlation filter-based tracking
Traffic accident detection using video surveillance is valuable research work in intelligent transportation systems. It is useful for responding to traffic accidents promptly that can avoid traffic jam or prevent secondary accident. In traffic accident detection, tracking occluded vehicles in real-time and accurately is one of the major sticking points for practical applications. In order to improve the tracking of occluded vehicles for traffic accident detection, this paper proposes a simple online tracking scheme with correlation filters (CF-SOLT). The CF-SOLT method utilizes a correlation filter-based auxiliary tracker to assist the main tracker. This auxiliary tracker helps prevent target ID switching caused by occlusion, enabling accurate vehicle tracking in occluded scenes. Based on the tracking results, a precise traffic accident detection algorithm is developed by integrating behavior analysis of both vehicles and pedestrians. The improved accident detection algorithm with the correlation filter-based auxiliary tracker can provide shorter response time, enabling quick identification and detection of traffic accidents. The experiments are conducted on the VisDrone2019, MOT-Traffic and Dataset of accident to evaluate the performances metrics of MOTA, IDF1, FPS, precision, response time and others. The results show that CF-SOLT improves MOTA and IDF1 by 5.3% and 6.7%, accident detection precision by 25%, and reduces response time by 56 s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
期刊最新文献
CF-SOLT: Real-time and accurate traffic accident detection using correlation filter-based tracking TransWild: Enhancing 3D interacting hands recovery in the wild with IoU-guided Transformer Machine learning applications in breast cancer prediction using mammography Channel and Spatial Enhancement Network for human parsing Non-negative subspace feature representation for few-shot learning in medical imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1