还原氧化石墨烯结构中超级电容现象的量子力学起源

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-11-07 DOI:10.1016/j.carbon.2024.119736
Thamyres F.M. Moreira, Edgar F. Pinzón, Adriano dos Santos, Laís C. Lopes, Paulo R. Bueno
{"title":"还原氧化石墨烯结构中超级电容现象的量子力学起源","authors":"Thamyres F.M. Moreira,&nbsp;Edgar F. Pinzón,&nbsp;Adriano dos Santos,&nbsp;Laís C. Lopes,&nbsp;Paulo R. Bueno","doi":"10.1016/j.carbon.2024.119736","DOIUrl":null,"url":null,"abstract":"<div><div>We investigated supercapacitance phenomena observed in reduced graphene oxide structures from a quantum mechanical rate viewpoint. The supercapacitance phenomenon in carbonaceous materials has been majorly attributed to electrostatic capacitance contributions, in which the magnitude of this capacitance is correlated with the amount of surface area available to be charged under the presence of electric potential perturbations. Nonetheless, the quantum rate theory predicts a superposition between electrostatic <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> and chemical <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> (also called quantum) capacitance energetic levels. The superposition of these capacitive states implies that the electric potential perturbation not only drives the separation of charges in space (thus correlating with the geometry of the capacitor and consequently with the surface area) but also governs the occupancy of the electric-field screened electronic structure of reduced graphene oxide embedded in the electrolyte environment. This leads to an energy degeneracy between electrostatic <span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span> and quantum <span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span> capacitive energy states, as confirmed in this work for reduced graphene oxide carbonaceous structures. Accordingly, the analysis proves that the charge dynamics associated with the resistance for charging the pseudo-capacitive <span><math><mrow><mi>E</mi><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span> states of reduced graphene oxide structure follows a quantum resistance limit <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>=</mo><mi>h</mi><mo>/</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∼</mo><mn>25</mn><mo>.</mo><mn>8</mn></mrow></math></span> k<span><math><mi>Ω</mi></math></span> within a charging frequency of <span><math><mrow><mi>ν</mi><mo>=</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>K</mi></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>=</mo><mi>E</mi><mo>/</mo><mi>h</mi><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>h</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span> that obeys quantum electrodynamics principles, in agreement with the premises of the quantum rate theory. Two energy levels associated with the occupancy of the electronic states upon the reduction of graphene oxide were identified.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The quantum mechanical origin of the supercapacitance phenomenon in reduced graphene oxide structures\",\"authors\":\"Thamyres F.M. Moreira,&nbsp;Edgar F. Pinzón,&nbsp;Adriano dos Santos,&nbsp;Laís C. Lopes,&nbsp;Paulo R. Bueno\",\"doi\":\"10.1016/j.carbon.2024.119736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigated supercapacitance phenomena observed in reduced graphene oxide structures from a quantum mechanical rate viewpoint. The supercapacitance phenomenon in carbonaceous materials has been majorly attributed to electrostatic capacitance contributions, in which the magnitude of this capacitance is correlated with the amount of surface area available to be charged under the presence of electric potential perturbations. Nonetheless, the quantum rate theory predicts a superposition between electrostatic <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> and chemical <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> (also called quantum) capacitance energetic levels. The superposition of these capacitive states implies that the electric potential perturbation not only drives the separation of charges in space (thus correlating with the geometry of the capacitor and consequently with the surface area) but also governs the occupancy of the electric-field screened electronic structure of reduced graphene oxide embedded in the electrolyte environment. This leads to an energy degeneracy between electrostatic <span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span> and quantum <span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span> capacitive energy states, as confirmed in this work for reduced graphene oxide carbonaceous structures. Accordingly, the analysis proves that the charge dynamics associated with the resistance for charging the pseudo-capacitive <span><math><mrow><mi>E</mi><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span> states of reduced graphene oxide structure follows a quantum resistance limit <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>=</mo><mi>h</mi><mo>/</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∼</mo><mn>25</mn><mo>.</mo><mn>8</mn></mrow></math></span> k<span><math><mi>Ω</mi></math></span> within a charging frequency of <span><math><mrow><mi>ν</mi><mo>=</mo><mn>1</mn><mo>/</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>K</mi></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>=</mo><mi>E</mi><mo>/</mo><mi>h</mi><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>h</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span> that obeys quantum electrodynamics principles, in agreement with the premises of the quantum rate theory. Two energy levels associated with the occupancy of the electronic states upon the reduction of graphene oxide were identified.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622324009552\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324009552","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The quantum mechanical origin of the supercapacitance phenomenon in reduced graphene oxide structures
We investigated supercapacitance phenomena observed in reduced graphene oxide structures from a quantum mechanical rate viewpoint. The supercapacitance phenomenon in carbonaceous materials has been majorly attributed to electrostatic capacitance contributions, in which the magnitude of this capacitance is correlated with the amount of surface area available to be charged under the presence of electric potential perturbations. Nonetheless, the quantum rate theory predicts a superposition between electrostatic Ce and chemical Cq (also called quantum) capacitance energetic levels. The superposition of these capacitive states implies that the electric potential perturbation not only drives the separation of charges in space (thus correlating with the geometry of the capacitor and consequently with the surface area) but also governs the occupancy of the electric-field screened electronic structure of reduced graphene oxide embedded in the electrolyte environment. This leads to an energy degeneracy between electrostatic e2/Cq and quantum e2/Cq capacitive energy states, as confirmed in this work for reduced graphene oxide carbonaceous structures. Accordingly, the analysis proves that the charge dynamics associated with the resistance for charging the pseudo-capacitive E=e2/Cq states of reduced graphene oxide structure follows a quantum resistance limit RK=h/e225.8 kΩ within a charging frequency of ν=1/RKCq=E/h=e2/hCq that obeys quantum electrodynamics principles, in agreement with the premises of the quantum rate theory. Two energy levels associated with the occupancy of the electronic states upon the reduction of graphene oxide were identified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Novel ultralight carbon foam reinforced carbon aerogel composites with low volume shrinkage and excellent thermal insulation performance Synergistic NH2-MIL-88B/Ta4C3TX/graphene aerogels for sustainable wastewater treatment and thermal energy storage MXene-CNTs/Co dielectric-electromagnetic synergistic composites with multi-heterogeneous interfaces for microwave absorption Hierarchical core-shell transitional metal chalcogenides Co9S8/ CoSe2@C nanocube embedded into porous carbon for tunable and efficient microwave absorption Coating carbon cloth with Cu3Se2 by electrodeposition for pressure sensing and enhanced EMI shielding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1