{"title":"基于样条的时空分数对流扩散问题求解框架","authors":"Chiara Sorgentone , Enza Pellegrino , Francesca Pitolli","doi":"10.1016/j.aml.2024.109370","DOIUrl":null,"url":null,"abstract":"<div><div>In this study we consider a spline-based collocation method to approximate the solution of fractional convection–diffusion equations which include fractional derivatives in both space and time. This kind of fractional differential equations are valuable for modeling various real-world phenomena across different scientific disciplines such as finance, physics, biology and engineering.</div><div>The model includes the fractional derivatives of order between 0 and 1 in space and time, considered in the Caputo sense and the spatial fractional diffusion, represented by the Riesz–Caputo derivative (fractional order between 1 and 2). We propose and analyze a collocation method that employs a B-spline representation of the solution. This method exploits the symmetry properties of both the spline basis functions and the Riesz–Caputo operator, leading to an efficient approach for solving the fractional differential problem. We discuss the advantages of using Greville Abscissae as collocation points, and compare this choice with other possible distributions of points. Numerical experiments are presented to demonstrate the effectiveness of the proposed method.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"161 ","pages":"Article 109370"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spline-based framework for solving the space–time fractional convection–diffusion problem\",\"authors\":\"Chiara Sorgentone , Enza Pellegrino , Francesca Pitolli\",\"doi\":\"10.1016/j.aml.2024.109370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study we consider a spline-based collocation method to approximate the solution of fractional convection–diffusion equations which include fractional derivatives in both space and time. This kind of fractional differential equations are valuable for modeling various real-world phenomena across different scientific disciplines such as finance, physics, biology and engineering.</div><div>The model includes the fractional derivatives of order between 0 and 1 in space and time, considered in the Caputo sense and the spatial fractional diffusion, represented by the Riesz–Caputo derivative (fractional order between 1 and 2). We propose and analyze a collocation method that employs a B-spline representation of the solution. This method exploits the symmetry properties of both the spline basis functions and the Riesz–Caputo operator, leading to an efficient approach for solving the fractional differential problem. We discuss the advantages of using Greville Abscissae as collocation points, and compare this choice with other possible distributions of points. Numerical experiments are presented to demonstrate the effectiveness of the proposed method.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"161 \",\"pages\":\"Article 109370\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003902\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003902","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A spline-based framework for solving the space–time fractional convection–diffusion problem
In this study we consider a spline-based collocation method to approximate the solution of fractional convection–diffusion equations which include fractional derivatives in both space and time. This kind of fractional differential equations are valuable for modeling various real-world phenomena across different scientific disciplines such as finance, physics, biology and engineering.
The model includes the fractional derivatives of order between 0 and 1 in space and time, considered in the Caputo sense and the spatial fractional diffusion, represented by the Riesz–Caputo derivative (fractional order between 1 and 2). We propose and analyze a collocation method that employs a B-spline representation of the solution. This method exploits the symmetry properties of both the spline basis functions and the Riesz–Caputo operator, leading to an efficient approach for solving the fractional differential problem. We discuss the advantages of using Greville Abscissae as collocation points, and compare this choice with other possible distributions of points. Numerical experiments are presented to demonstrate the effectiveness of the proposed method.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.