为无人机互联网使用物理不可克隆函数的轻量级隐私保护认证密钥协议

IF 3.8 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Information Security and Applications Pub Date : 2024-11-15 DOI:10.1016/j.jisa.2024.103915
Tian-Fu Lee , Xiucai Ye , Wei-Jie Huang
{"title":"为无人机互联网使用物理不可克隆函数的轻量级隐私保护认证密钥协议","authors":"Tian-Fu Lee ,&nbsp;Xiucai Ye ,&nbsp;Wei-Jie Huang","doi":"10.1016/j.jisa.2024.103915","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet of Drones (IoD) means the cooperative collection and transmission of data by multiple drones in a cluster or decentralized way of working to decrease the energy consumption of mobile devices, increase overall performance, and reduce the cost of building infrastructure. It is widely applied in various fields, including environmental scouting and monitoring, emergency assistance and logistics transportation, etc. Recently, many related authentication schemes were proposed for IoD. Due to the limitation that the drones use lightweight components for development, these authentication schemes mostly use lightweight components for development. However, many authentication schemes cannot overcome security issues such as providing user privacy protection and resisting drone capture attacks. This study discusses these security issues of related schemes, and develops an authentication scheme for IoD by using Physically Unclonable Functions (PUF). Due to its own microscopic characteristics, the PUF can generate unpredictable and duplicate information, which can be regarded as a device fingerprint and is suitable for device authentication. Additionally, this study utilizes the commutative and invertible properties of BS-PUF to develop the key exchange of the proposed scheme and to protect user privacy. This proposed scheme overcomes the previous problems in security, has more security features, and maintains lightweight computational costs.</div></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"87 ","pages":"Article 103915"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight privacy-preserving authenticated key agreements using physically unclonable functions for internet of drones\",\"authors\":\"Tian-Fu Lee ,&nbsp;Xiucai Ye ,&nbsp;Wei-Jie Huang\",\"doi\":\"10.1016/j.jisa.2024.103915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Internet of Drones (IoD) means the cooperative collection and transmission of data by multiple drones in a cluster or decentralized way of working to decrease the energy consumption of mobile devices, increase overall performance, and reduce the cost of building infrastructure. It is widely applied in various fields, including environmental scouting and monitoring, emergency assistance and logistics transportation, etc. Recently, many related authentication schemes were proposed for IoD. Due to the limitation that the drones use lightweight components for development, these authentication schemes mostly use lightweight components for development. However, many authentication schemes cannot overcome security issues such as providing user privacy protection and resisting drone capture attacks. This study discusses these security issues of related schemes, and develops an authentication scheme for IoD by using Physically Unclonable Functions (PUF). Due to its own microscopic characteristics, the PUF can generate unpredictable and duplicate information, which can be regarded as a device fingerprint and is suitable for device authentication. Additionally, this study utilizes the commutative and invertible properties of BS-PUF to develop the key exchange of the proposed scheme and to protect user privacy. This proposed scheme overcomes the previous problems in security, has more security features, and maintains lightweight computational costs.</div></div>\",\"PeriodicalId\":48638,\"journal\":{\"name\":\"Journal of Information Security and Applications\",\"volume\":\"87 \",\"pages\":\"Article 103915\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Security and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214212624002175\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212624002175","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

无人机互联网(IoD)是指多架无人机以集群或分散的工作方式合作收集和传输数据,从而降低移动设备的能耗,提高整体性能,降低基础设施建设成本。它被广泛应用于各个领域,包括环境侦察和监测、紧急援助和物流运输等。最近,许多相关的身份验证方案被提出用于物联网。由于无人机使用轻量级组件进行开发的局限性,这些认证方案大多使用轻量级组件进行开发。然而,许多身份验证方案无法克服安全问题,如提供用户隐私保护和抵御无人机捕获攻击。本研究讨论了相关方案的这些安全问题,并利用物理不可克隆函数(PUF)开发了一种用于 IoD 的身份验证方案。由于 PUF 自身的微观特性,它可以生成不可预测的重复信息,可视为设备指纹,适用于设备身份验证。此外,本研究还利用了 BS-PUF 的交换和可逆特性来开发拟议方案的密钥交换,并保护用户隐私。该方案克服了以往在安全性方面存在的问题,具有更多的安全特性,并保持了轻量级计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lightweight privacy-preserving authenticated key agreements using physically unclonable functions for internet of drones
The Internet of Drones (IoD) means the cooperative collection and transmission of data by multiple drones in a cluster or decentralized way of working to decrease the energy consumption of mobile devices, increase overall performance, and reduce the cost of building infrastructure. It is widely applied in various fields, including environmental scouting and monitoring, emergency assistance and logistics transportation, etc. Recently, many related authentication schemes were proposed for IoD. Due to the limitation that the drones use lightweight components for development, these authentication schemes mostly use lightweight components for development. However, many authentication schemes cannot overcome security issues such as providing user privacy protection and resisting drone capture attacks. This study discusses these security issues of related schemes, and develops an authentication scheme for IoD by using Physically Unclonable Functions (PUF). Due to its own microscopic characteristics, the PUF can generate unpredictable and duplicate information, which can be regarded as a device fingerprint and is suitable for device authentication. Additionally, this study utilizes the commutative and invertible properties of BS-PUF to develop the key exchange of the proposed scheme and to protect user privacy. This proposed scheme overcomes the previous problems in security, has more security features, and maintains lightweight computational costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Information Security and Applications
Journal of Information Security and Applications Computer Science-Computer Networks and Communications
CiteScore
10.90
自引率
5.40%
发文量
206
审稿时长
56 days
期刊介绍: Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.
期刊最新文献
Fed-LSAE: Thwarting poisoning attacks against federated cyber threat detection system via Autoencoder-based latent space inspection Lightweight privacy-preserving authenticated key agreements using physically unclonable functions for internet of drones BCRS-DS: A Privacy-protected data sharing scheme for IoT based on blockchain and certificateless ring signature Privacy-preserving verifiable fuzzy phrase search over cloud-based data Robust coverless video steganography based on pose estimation and object tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1