在 Ba2V0.4Fe0.9Mo0.7O6-δ上原位溶出超高镍金属锚定,用作高催化活性固体氧化物燃料电池复合阳极

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering B-advanced Functional Solid-state Materials Pub Date : 2024-11-09 DOI:10.1016/j.mseb.2024.117809
Wang Liu, Lemei Song, Yuanhui Su, Yu Huan, Tao Wei
{"title":"在 Ba2V0.4Fe0.9Mo0.7O6-δ上原位溶出超高镍金属锚定,用作高催化活性固体氧化物燃料电池复合阳极","authors":"Wang Liu,&nbsp;Lemei Song,&nbsp;Yuanhui Su,&nbsp;Yu Huan,&nbsp;Tao Wei","doi":"10.1016/j.mseb.2024.117809","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite materials, such as Ba<sub>2</sub>FeMoO<sub>6−δ</sub> using as Solid oxide fuel cells (SOFCs) anodes have shown excellent anti-carbon deposition to catalyze hydrocarbon fuel gases. However, the perovskite-based anodes still show insufficient catalytic activity and conductivity, which restricted for achieving highest SOFC power output. In this work, a Ni super-excess Ba<sub>2</sub>V<sub>0.4</sub>Fe<sub>0.9</sub>Mo<sub>0.7</sub>O<sub>6−δ</sub>-Ni<sub>x</sub> (BVFMO-Ni<sub>x</sub>, x = 0, 0.2, 0.4, 0.6) composite anode was first synthesized by in-situ exsolving FeNi<sub>3</sub> alloy nanoparticles and firmly anchoring on the surface of parent BVFMO, which shows obvious improvement in conductivity and catalytic activity for methane fuel gas. When BVFMO-Ni<sub>0.4</sub> is subjected to methane reforming for hydrogen production, the conversion rate reaches 56 % at 750 °C and remains above 50 % for more than 640 h continue test. Using BVFMO-Ni<sub>0.4</sub> as a single-cell composite anode and testing at 850 °C, the maximum power outputs reach 991 mW cm<sup>−2</sup> and 578 mW cm<sup>−2</sup> with hydrogen and methane as fuel gas, respectively.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117809"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ exsolution super-excess Ni metal anchoring on Ba2V0.4Fe0.9Mo0.7O6−δ using as high catalytic activity solid oxide fuel cell composite anode\",\"authors\":\"Wang Liu,&nbsp;Lemei Song,&nbsp;Yuanhui Su,&nbsp;Yu Huan,&nbsp;Tao Wei\",\"doi\":\"10.1016/j.mseb.2024.117809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Perovskite materials, such as Ba<sub>2</sub>FeMoO<sub>6−δ</sub> using as Solid oxide fuel cells (SOFCs) anodes have shown excellent anti-carbon deposition to catalyze hydrocarbon fuel gases. However, the perovskite-based anodes still show insufficient catalytic activity and conductivity, which restricted for achieving highest SOFC power output. In this work, a Ni super-excess Ba<sub>2</sub>V<sub>0.4</sub>Fe<sub>0.9</sub>Mo<sub>0.7</sub>O<sub>6−δ</sub>-Ni<sub>x</sub> (BVFMO-Ni<sub>x</sub>, x = 0, 0.2, 0.4, 0.6) composite anode was first synthesized by in-situ exsolving FeNi<sub>3</sub> alloy nanoparticles and firmly anchoring on the surface of parent BVFMO, which shows obvious improvement in conductivity and catalytic activity for methane fuel gas. When BVFMO-Ni<sub>0.4</sub> is subjected to methane reforming for hydrogen production, the conversion rate reaches 56 % at 750 °C and remains above 50 % for more than 640 h continue test. Using BVFMO-Ni<sub>0.4</sub> as a single-cell composite anode and testing at 850 °C, the maximum power outputs reach 991 mW cm<sup>−2</sup> and 578 mW cm<sup>−2</sup> with hydrogen and methane as fuel gas, respectively.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering B-advanced Functional Solid-state Materials\",\"volume\":\"311 \",\"pages\":\"Article 117809\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering B-advanced Functional Solid-state Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092151072400638X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092151072400638X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

用作固体氧化物燃料电池(SOFCs)阳极的透辉石材料(如 Ba2FeMoO6-δ)在催化碳氢化合物燃料气体方面表现出卓越的抗碳沉积能力。然而,基于透辉石的阳极仍然显示出不足的催化活性和导电性,这限制了实现最高的 SOFC 功率输出。在这项工作中,首先通过原位外溶解 FeNi3 合金纳米颗粒并将其牢固地锚定在母体 BVFMO 表面,合成了 Ni 超增殖 Ba2V0.4Fe0.9Mo0.7O6-δ-Nix (BVFMO-Nix,x = 0、0.2、0.4、0.6)复合阳极,该阳极在甲烷燃料气体的导电性和催化活性方面都有明显改善。当 BVFMO-Ni0.4 进行甲烷重整制氢时,在 750 °C 温度下转化率达到 56%,并在持续试验超过 640 小时后仍保持在 50%以上。使用 BVFMO-Ni0.4 作为单电池复合阳极并在 850 ℃ 下进行测试,在使用氢气和甲烷作为燃料气体时,最大功率输出分别达到 991 mW cm-2 和 578 mW cm-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-situ exsolution super-excess Ni metal anchoring on Ba2V0.4Fe0.9Mo0.7O6−δ using as high catalytic activity solid oxide fuel cell composite anode
Perovskite materials, such as Ba2FeMoO6−δ using as Solid oxide fuel cells (SOFCs) anodes have shown excellent anti-carbon deposition to catalyze hydrocarbon fuel gases. However, the perovskite-based anodes still show insufficient catalytic activity and conductivity, which restricted for achieving highest SOFC power output. In this work, a Ni super-excess Ba2V0.4Fe0.9Mo0.7O6−δ-Nix (BVFMO-Nix, x = 0, 0.2, 0.4, 0.6) composite anode was first synthesized by in-situ exsolving FeNi3 alloy nanoparticles and firmly anchoring on the surface of parent BVFMO, which shows obvious improvement in conductivity and catalytic activity for methane fuel gas. When BVFMO-Ni0.4 is subjected to methane reforming for hydrogen production, the conversion rate reaches 56 % at 750 °C and remains above 50 % for more than 640 h continue test. Using BVFMO-Ni0.4 as a single-cell composite anode and testing at 850 °C, the maximum power outputs reach 991 mW cm−2 and 578 mW cm−2 with hydrogen and methane as fuel gas, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
期刊最新文献
Improved magnetic and thermal conductivity performance of FeSi soft magnetic composites by adding h-BN Structural, morphological, and electric study of doped- Na2Zn2TeO6 family in a wide range of temperatures Performance enhancement of intermediate-temperature SOFCs using Ba0.5Sr0.5Sc0.2-xTaxCo0.8O3-δ-Based composite cathodes 2D materials integrated with polymers for sustainable energy harvesting through triboelectric nanogenerators Bifunctional heterostructure ZnWO4@ZnO nanocomposite for high-performance electrocatalysis and supercapacitor applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1