适当的数控配位提高了石墨烯边缘锚定铂单原子将甲烷和二氧化碳转化为醋酸的催化活性

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Molecular Catalysis Pub Date : 2024-11-16 DOI:10.1016/j.mcat.2024.114688
Baoyu Huang , Xiaomei Zhao , Yang Ma , Zhengjun Fang
{"title":"适当的数控配位提高了石墨烯边缘锚定铂单原子将甲烷和二氧化碳转化为醋酸的催化活性","authors":"Baoyu Huang ,&nbsp;Xiaomei Zhao ,&nbsp;Yang Ma ,&nbsp;Zhengjun Fang","doi":"10.1016/j.mcat.2024.114688","DOIUrl":null,"url":null,"abstract":"<div><div>The reaction of directly converting CH<sub>4</sub> and CO<sub>2</sub> into acetic acid has a wide and important application in the chemical industry. In this work, we carried out systematically computational chemistry study on the catalytic performance of the single Pt atom catalyst anchored at the edge of N-doped graphene for the direct co-conversion of CH<sub>4</sub> and CO<sub>2</sub> to acetic acid based on density functional theory (DFT) calculations. The DFT calculation results show the catalytic activity of single Pt atom is significantly tuned by the local N-atom coordination. The Pt-N<sub>1</sub>C exhibits the best catalytic performance of CH<sub>4</sub> and CO<sub>2</sub> conversion with a low rate-determining free energy barrier of 0.69 eV The microkinetic modeling shows that the TOF of CH<sub>3</sub>COOH on Pt-N<sub>1</sub>C catalyst reaches 7.63×10<sup>2</sup> <em>s</em><sup>−1</sup> at 600 K and 2 bar Further analysis shows that the adsorption strength of reactant CH<sub>4</sub> and CO<sub>2</sub> is linearly correlated with the energy level of d<sub>xy</sub> orbital center of Pt atom. A moderate adsorption strength of CH<sub>4</sub> and CO<sub>2</sub> over the Pt-N<sub>1</sub>C leads to easier activation of methane and migration of H and CH<sub>3</sub> during the conversion reaction.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"570 ","pages":"Article 114688"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proper NCoordination improves catalytic activity of graphene edge anchored Pt single atom for conversion of methane and carbon dioxide to acetic acid\",\"authors\":\"Baoyu Huang ,&nbsp;Xiaomei Zhao ,&nbsp;Yang Ma ,&nbsp;Zhengjun Fang\",\"doi\":\"10.1016/j.mcat.2024.114688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The reaction of directly converting CH<sub>4</sub> and CO<sub>2</sub> into acetic acid has a wide and important application in the chemical industry. In this work, we carried out systematically computational chemistry study on the catalytic performance of the single Pt atom catalyst anchored at the edge of N-doped graphene for the direct co-conversion of CH<sub>4</sub> and CO<sub>2</sub> to acetic acid based on density functional theory (DFT) calculations. The DFT calculation results show the catalytic activity of single Pt atom is significantly tuned by the local N-atom coordination. The Pt-N<sub>1</sub>C exhibits the best catalytic performance of CH<sub>4</sub> and CO<sub>2</sub> conversion with a low rate-determining free energy barrier of 0.69 eV The microkinetic modeling shows that the TOF of CH<sub>3</sub>COOH on Pt-N<sub>1</sub>C catalyst reaches 7.63×10<sup>2</sup> <em>s</em><sup>−1</sup> at 600 K and 2 bar Further analysis shows that the adsorption strength of reactant CH<sub>4</sub> and CO<sub>2</sub> is linearly correlated with the energy level of d<sub>xy</sub> orbital center of Pt atom. A moderate adsorption strength of CH<sub>4</sub> and CO<sub>2</sub> over the Pt-N<sub>1</sub>C leads to easier activation of methane and migration of H and CH<sub>3</sub> during the conversion reaction.</div></div>\",\"PeriodicalId\":393,\"journal\":{\"name\":\"Molecular Catalysis\",\"volume\":\"570 \",\"pages\":\"Article 114688\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468823124008708\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124008708","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

将 CH4 和 CO2 直接转化为醋酸的反应在化学工业中有着广泛而重要的应用。在这项工作中,我们基于密度泛函理论(DFT)计算,对锚定在掺杂 N 的石墨烯边缘的单铂原子催化剂的催化性能进行了系统的计算化学研究。DFT 计算结果表明,单个铂原子的催化活性受局部 N 原子配位的影响很大。微动模型显示,在 600 K 和 2 bar 条件下,CH3COOH 在 Pt-N1C 催化剂上的 TOF 达到 7.63×102 s-1 进一步分析表明,反应物 CH4 和 CO2 的吸附强度与铂原子 dxy 轨道中心的能级成线性关系。Pt-N1C 对 CH4 和 CO2 的吸附强度适中,因此在转化反应过程中甲烷更容易活化,H 和 CH3 更容易迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proper NCoordination improves catalytic activity of graphene edge anchored Pt single atom for conversion of methane and carbon dioxide to acetic acid
The reaction of directly converting CH4 and CO2 into acetic acid has a wide and important application in the chemical industry. In this work, we carried out systematically computational chemistry study on the catalytic performance of the single Pt atom catalyst anchored at the edge of N-doped graphene for the direct co-conversion of CH4 and CO2 to acetic acid based on density functional theory (DFT) calculations. The DFT calculation results show the catalytic activity of single Pt atom is significantly tuned by the local N-atom coordination. The Pt-N1C exhibits the best catalytic performance of CH4 and CO2 conversion with a low rate-determining free energy barrier of 0.69 eV The microkinetic modeling shows that the TOF of CH3COOH on Pt-N1C catalyst reaches 7.63×102 s−1 at 600 K and 2 bar Further analysis shows that the adsorption strength of reactant CH4 and CO2 is linearly correlated with the energy level of dxy orbital center of Pt atom. A moderate adsorption strength of CH4 and CO2 over the Pt-N1C leads to easier activation of methane and migration of H and CH3 during the conversion reaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
期刊最新文献
Proper NCoordination improves catalytic activity of graphene edge anchored Pt single atom for conversion of methane and carbon dioxide to acetic acid Spiro-linked hanging group cobalt phthalocyanine for CO2-to-methanol electrocatalysis unveiled by grand canonical density functional theory On the Mechanism of Acrylate and Propionate Silyl Esters Synthesis by Ruthenium-Catalyzed Coupling of CO2 with C2H4 in the Presence of Hydrosilanes: Combined Experimental and Computational Investigations Light alkanes dehydrogenation over silica supported gallium catalysts Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1