Jun Wang , Lei Qin , Jie Gu , Lunjie Wu , Man Zou , Xin Su , Yan Xu , Yao Nie
{"title":"中链醇脱氢酶的祖先工程学通过平衡活性、稳定性和选择性之间的权衡,增强了其催化兼容性","authors":"Jun Wang , Lei Qin , Jie Gu , Lunjie Wu , Man Zou , Xin Su , Yan Xu , Yao Nie","doi":"10.1016/j.mcat.2024.114657","DOIUrl":null,"url":null,"abstract":"<div><div>The role of medium-chain alcohol dehydrogenases (MDR) in the preparation of chiral drug intermediates is indispensable; however, limited activity and stability towards unnatural substrates are crucial factors that restrict their application. Further, research on the ancestral MDRs remains unclear. Therefore, enhancing the activity, selectivity, and stability of MDRs is necessary. In this study, we resurrected ancestors of the MDR family using ancestral sequence reconstruction with descendant <em>Gc</em>ADH as a probe. Among these ancestors, ancestor 136 exhibited increased thermal stability (Δ<em>T</em><sub>m</sub> = 19.5 °C) and had a comparable conversion and selectivity as <em>Gc</em>ADH to the selected substrates. After in-silico screening using the Funclib tool, we obtained the mutant anc136-R2, which exhibited strengthened selectivity and activity towards N-Benzyl-3,3-difluoropiperidin-4-one (1a). Moreover, the mutations of anc136-R2 were simultaneously mapped to <em>Gc</em>ADH, resulting <em>Gc</em>ADH-R2. Based on the results of substrate spectrum characterisation, anc136 was more receptive to mutations. Specifically, for the substrates N-Boc-3-piperidone (4a) and N-boc-3-oxoazepane (7a), the conversion rates of anc136-R2 were 29 and 57 times higher, respectively, than those of <em>Gc</em>ADH-R2, without compromising selectivity. In conclusion, this work provides guidance for exploring the evolutionary trajectory of the MDR family and further illustrates the superior balanced “trade-off” of activity–selectivity–stability on ancestral enzymes.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"570 ","pages":"Article 114657"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ancestor-originated engineering of medium-chain alcohol dehydrogenase enhances its catalytic compatibility by balancing activity, stability, and selectivity trade-offs\",\"authors\":\"Jun Wang , Lei Qin , Jie Gu , Lunjie Wu , Man Zou , Xin Su , Yan Xu , Yao Nie\",\"doi\":\"10.1016/j.mcat.2024.114657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The role of medium-chain alcohol dehydrogenases (MDR) in the preparation of chiral drug intermediates is indispensable; however, limited activity and stability towards unnatural substrates are crucial factors that restrict their application. Further, research on the ancestral MDRs remains unclear. Therefore, enhancing the activity, selectivity, and stability of MDRs is necessary. In this study, we resurrected ancestors of the MDR family using ancestral sequence reconstruction with descendant <em>Gc</em>ADH as a probe. Among these ancestors, ancestor 136 exhibited increased thermal stability (Δ<em>T</em><sub>m</sub> = 19.5 °C) and had a comparable conversion and selectivity as <em>Gc</em>ADH to the selected substrates. After in-silico screening using the Funclib tool, we obtained the mutant anc136-R2, which exhibited strengthened selectivity and activity towards N-Benzyl-3,3-difluoropiperidin-4-one (1a). Moreover, the mutations of anc136-R2 were simultaneously mapped to <em>Gc</em>ADH, resulting <em>Gc</em>ADH-R2. Based on the results of substrate spectrum characterisation, anc136 was more receptive to mutations. Specifically, for the substrates N-Boc-3-piperidone (4a) and N-boc-3-oxoazepane (7a), the conversion rates of anc136-R2 were 29 and 57 times higher, respectively, than those of <em>Gc</em>ADH-R2, without compromising selectivity. In conclusion, this work provides guidance for exploring the evolutionary trajectory of the MDR family and further illustrates the superior balanced “trade-off” of activity–selectivity–stability on ancestral enzymes.</div></div>\",\"PeriodicalId\":393,\"journal\":{\"name\":\"Molecular Catalysis\",\"volume\":\"570 \",\"pages\":\"Article 114657\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468823124008393\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124008393","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ancestor-originated engineering of medium-chain alcohol dehydrogenase enhances its catalytic compatibility by balancing activity, stability, and selectivity trade-offs
The role of medium-chain alcohol dehydrogenases (MDR) in the preparation of chiral drug intermediates is indispensable; however, limited activity and stability towards unnatural substrates are crucial factors that restrict their application. Further, research on the ancestral MDRs remains unclear. Therefore, enhancing the activity, selectivity, and stability of MDRs is necessary. In this study, we resurrected ancestors of the MDR family using ancestral sequence reconstruction with descendant GcADH as a probe. Among these ancestors, ancestor 136 exhibited increased thermal stability (ΔTm = 19.5 °C) and had a comparable conversion and selectivity as GcADH to the selected substrates. After in-silico screening using the Funclib tool, we obtained the mutant anc136-R2, which exhibited strengthened selectivity and activity towards N-Benzyl-3,3-difluoropiperidin-4-one (1a). Moreover, the mutations of anc136-R2 were simultaneously mapped to GcADH, resulting GcADH-R2. Based on the results of substrate spectrum characterisation, anc136 was more receptive to mutations. Specifically, for the substrates N-Boc-3-piperidone (4a) and N-boc-3-oxoazepane (7a), the conversion rates of anc136-R2 were 29 and 57 times higher, respectively, than those of GcADH-R2, without compromising selectivity. In conclusion, this work provides guidance for exploring the evolutionary trajectory of the MDR family and further illustrates the superior balanced “trade-off” of activity–selectivity–stability on ancestral enzymes.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods