Kai Chang, Yi Tan, Rusheng Bai, Lidan Ning, Gengyi Dong, Pengting Li, Yinong Wang
{"title":"利用电子束滴熔技术制备的具有精细微观结构的新型铸锻 FGH4096 超合金及其均匀化行为","authors":"Kai Chang, Yi Tan, Rusheng Bai, Lidan Ning, Gengyi Dong, Pengting Li, Yinong Wang","doi":"10.1016/j.jmapro.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>The first proposal of using Electron beam drip melting (EBDM) technology to prepare 〈001〉 oriented columnar grain superalloy was prepared. The study investigated the effects of the EBDM on the microstructure of FGH4096 alloy and the evolution of microstructure during the homogenization process, providing a solid foundation for subsequent thermal deformation processes. Compared to traditional melting methods, the secondary dendrite arm spacing of the EBDM alloy has been significantly reduced by over 40 %, with a 47.5 % decrease in the size of the γ’ phase in the dendrite arm regions. The size of the γ’ phase in the interdendritic regions has decreased by 28.9 %. The size and number of pores in superalloys produced by EBDM are significantly reduced, with a decrease in porosity of approximately one order of magnitude. The high temperature gradients and melt convection effects in the EBDM process promote an increase in the solute boundary layer thickness, significantly reducing both macroscopic and microscopic segregation. The EBDM process can generate relatively high internal residual stresses. By conducting homogenization treatment to control crystal orientation, it is possible to retain the advantages of columnar grain thermal deformation while using the residual stresses that are retained to provide activation energy for subsequent thermal deformation processes. This significantly enhances the thermal deformation capabilities of FGH4096 alloy.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"132 ","pages":"Pages 451-466"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel cast & wrought FGH4096 superalloy with refined microstructures prepared by electron beam drip melting technology and its homogenization behavior\",\"authors\":\"Kai Chang, Yi Tan, Rusheng Bai, Lidan Ning, Gengyi Dong, Pengting Li, Yinong Wang\",\"doi\":\"10.1016/j.jmapro.2024.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The first proposal of using Electron beam drip melting (EBDM) technology to prepare 〈001〉 oriented columnar grain superalloy was prepared. The study investigated the effects of the EBDM on the microstructure of FGH4096 alloy and the evolution of microstructure during the homogenization process, providing a solid foundation for subsequent thermal deformation processes. Compared to traditional melting methods, the secondary dendrite arm spacing of the EBDM alloy has been significantly reduced by over 40 %, with a 47.5 % decrease in the size of the γ’ phase in the dendrite arm regions. The size of the γ’ phase in the interdendritic regions has decreased by 28.9 %. The size and number of pores in superalloys produced by EBDM are significantly reduced, with a decrease in porosity of approximately one order of magnitude. The high temperature gradients and melt convection effects in the EBDM process promote an increase in the solute boundary layer thickness, significantly reducing both macroscopic and microscopic segregation. The EBDM process can generate relatively high internal residual stresses. By conducting homogenization treatment to control crystal orientation, it is possible to retain the advantages of columnar grain thermal deformation while using the residual stresses that are retained to provide activation energy for subsequent thermal deformation processes. This significantly enhances the thermal deformation capabilities of FGH4096 alloy.</div></div>\",\"PeriodicalId\":16148,\"journal\":{\"name\":\"Journal of Manufacturing Processes\",\"volume\":\"132 \",\"pages\":\"Pages 451-466\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Processes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1526612524011320\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612524011320","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
A novel cast & wrought FGH4096 superalloy with refined microstructures prepared by electron beam drip melting technology and its homogenization behavior
The first proposal of using Electron beam drip melting (EBDM) technology to prepare 〈001〉 oriented columnar grain superalloy was prepared. The study investigated the effects of the EBDM on the microstructure of FGH4096 alloy and the evolution of microstructure during the homogenization process, providing a solid foundation for subsequent thermal deformation processes. Compared to traditional melting methods, the secondary dendrite arm spacing of the EBDM alloy has been significantly reduced by over 40 %, with a 47.5 % decrease in the size of the γ’ phase in the dendrite arm regions. The size of the γ’ phase in the interdendritic regions has decreased by 28.9 %. The size and number of pores in superalloys produced by EBDM are significantly reduced, with a decrease in porosity of approximately one order of magnitude. The high temperature gradients and melt convection effects in the EBDM process promote an increase in the solute boundary layer thickness, significantly reducing both macroscopic and microscopic segregation. The EBDM process can generate relatively high internal residual stresses. By conducting homogenization treatment to control crystal orientation, it is possible to retain the advantages of columnar grain thermal deformation while using the residual stresses that are retained to provide activation energy for subsequent thermal deformation processes. This significantly enhances the thermal deformation capabilities of FGH4096 alloy.
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.