Chongbo Yin , Jian Qin , Yan Shi , Yineng Zheng , Xingming Guo
{"title":"基于临床心电图和大核卷积交互网络的严重冠状动脉疾病检测","authors":"Chongbo Yin , Jian Qin , Yan Shi , Yineng Zheng , Xingming Guo","doi":"10.1016/j.bspc.2024.107186","DOIUrl":null,"url":null,"abstract":"<div><div>Heart sound auscultation coupled with machine learning algorithms is a risk-free and low-cost method for coronary artery disease detection (CAD). However, current studies mainly focus on CAD screening, namely classifying CAD and non-CAD, due to limited clinical data and algorithm performance. This leaves a gap to investigate CAD severity by phonocardiogram (PCG). To solve the issue, we first establish a clinical PCG dataset for CAD patients. The dataset includes 150 subjects with 80 severe CAD and 70 non-severe CAD patients. Then, we propose the large kernel convolution interaction network (LKCIN) to detect CAD severity. It integrates automatic feature extraction and pattern classification and simplifies PCG processing steps. The developed large kernel interaction block (LKIB) has three properties: long-distance dependency, local receptive field, and channel interaction, which efficiently improves feature extraction capabilities in LKCIN. Apart from it, a separate downsampling block is proposed to alleviate feature losses during forward propagation, following the LKIBs. Experiment is performed on the clinical PCG data, and LKCIN obtains good classification performance with accuracy 85.97 %, sensitivity 85.64 %, and specificity 86.26 %. Our study breaks conventional CAD screening, and provides a reliable option for CAD severity detection in clinical practice.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"100 ","pages":"Article 107186"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of severe coronary artery disease based on clinical phonocardiogram and large kernel convolution interaction network\",\"authors\":\"Chongbo Yin , Jian Qin , Yan Shi , Yineng Zheng , Xingming Guo\",\"doi\":\"10.1016/j.bspc.2024.107186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heart sound auscultation coupled with machine learning algorithms is a risk-free and low-cost method for coronary artery disease detection (CAD). However, current studies mainly focus on CAD screening, namely classifying CAD and non-CAD, due to limited clinical data and algorithm performance. This leaves a gap to investigate CAD severity by phonocardiogram (PCG). To solve the issue, we first establish a clinical PCG dataset for CAD patients. The dataset includes 150 subjects with 80 severe CAD and 70 non-severe CAD patients. Then, we propose the large kernel convolution interaction network (LKCIN) to detect CAD severity. It integrates automatic feature extraction and pattern classification and simplifies PCG processing steps. The developed large kernel interaction block (LKIB) has three properties: long-distance dependency, local receptive field, and channel interaction, which efficiently improves feature extraction capabilities in LKCIN. Apart from it, a separate downsampling block is proposed to alleviate feature losses during forward propagation, following the LKIBs. Experiment is performed on the clinical PCG data, and LKCIN obtains good classification performance with accuracy 85.97 %, sensitivity 85.64 %, and specificity 86.26 %. Our study breaks conventional CAD screening, and provides a reliable option for CAD severity detection in clinical practice.</div></div>\",\"PeriodicalId\":55362,\"journal\":{\"name\":\"Biomedical Signal Processing and Control\",\"volume\":\"100 \",\"pages\":\"Article 107186\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Signal Processing and Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1746809424012448\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809424012448","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Detection of severe coronary artery disease based on clinical phonocardiogram and large kernel convolution interaction network
Heart sound auscultation coupled with machine learning algorithms is a risk-free and low-cost method for coronary artery disease detection (CAD). However, current studies mainly focus on CAD screening, namely classifying CAD and non-CAD, due to limited clinical data and algorithm performance. This leaves a gap to investigate CAD severity by phonocardiogram (PCG). To solve the issue, we first establish a clinical PCG dataset for CAD patients. The dataset includes 150 subjects with 80 severe CAD and 70 non-severe CAD patients. Then, we propose the large kernel convolution interaction network (LKCIN) to detect CAD severity. It integrates automatic feature extraction and pattern classification and simplifies PCG processing steps. The developed large kernel interaction block (LKIB) has three properties: long-distance dependency, local receptive field, and channel interaction, which efficiently improves feature extraction capabilities in LKCIN. Apart from it, a separate downsampling block is proposed to alleviate feature losses during forward propagation, following the LKIBs. Experiment is performed on the clinical PCG data, and LKCIN obtains good classification performance with accuracy 85.97 %, sensitivity 85.64 %, and specificity 86.26 %. Our study breaks conventional CAD screening, and provides a reliable option for CAD severity detection in clinical practice.
期刊介绍:
Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management.
Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.