蒸汽养护对再生骨料混凝土循环三轴特性的影响:实验分析与 DEM 模拟

IF 4.7 2区 工程技术 Q1 MECHANICS Engineering Fracture Mechanics Pub Date : 2024-11-12 DOI:10.1016/j.engfracmech.2024.110643
Xiangyi Zhu , Peng Lei , Xudong Chen , Jingwu Bu
{"title":"蒸汽养护对再生骨料混凝土循环三轴特性的影响:实验分析与 DEM 模拟","authors":"Xiangyi Zhu ,&nbsp;Peng Lei ,&nbsp;Xudong Chen ,&nbsp;Jingwu Bu","doi":"10.1016/j.engfracmech.2024.110643","DOIUrl":null,"url":null,"abstract":"<div><div>The engineering application of steam-cured recycled aggregate concrete (often in a cyclic triaxial stress state) can not only improve the recycling efficiency of resources, but also accelerate the construction progress. In this paper, we adopt a combination of laboratory experiments, theoretical analysis and numerical simulation to study the cyclic triaxial characteristics of recycled aggregate concrete (RAC) under different curing regimes (20℃, 40℃, 60℃ and 80℃). The results indicate that as the steam curing temperature increases, the internal damage caused by high temperature continues to intensify, and the cyclic triaxial failure mode of RAC transitions from shear failure to compression failure, and its peak strength, dynamic elastic modulus, and dilatancy angle all show a downward trend. A linear prediction model is established based on the strong correlation between peak strength and steam curing temperature. As the loading cycles increase, the dynamic elastic modulus and dilatancy angle of RAC show exponential and linear downward trends respectively, and the decline rate increases with the increase of steam curing temperature, and the prediction models for dynamic elastic modulus and dilatancy angle are established based on quantitative relationships between variables. On the basis of experimental analysis results, a cyclic triaxial DEM model considering real recycled aggregates is established by introducing steam-cured damage indexes into the mesoscopic parameters, and its applicability in predicting cyclic triaxial mechanical properties of RAC under different curing regimes is verified. The research outcomes can save a lot of test cost and time consumption for developing steam-cured concrete with better performance, and have important theoretical guidance and practical significance for the wide application of steam-cured concrete.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"312 ","pages":"Article 110643"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of steam curing on cyclic triaxial characteristics of recycled aggregate concrete: Experimental analysis and DEM simulation\",\"authors\":\"Xiangyi Zhu ,&nbsp;Peng Lei ,&nbsp;Xudong Chen ,&nbsp;Jingwu Bu\",\"doi\":\"10.1016/j.engfracmech.2024.110643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The engineering application of steam-cured recycled aggregate concrete (often in a cyclic triaxial stress state) can not only improve the recycling efficiency of resources, but also accelerate the construction progress. In this paper, we adopt a combination of laboratory experiments, theoretical analysis and numerical simulation to study the cyclic triaxial characteristics of recycled aggregate concrete (RAC) under different curing regimes (20℃, 40℃, 60℃ and 80℃). The results indicate that as the steam curing temperature increases, the internal damage caused by high temperature continues to intensify, and the cyclic triaxial failure mode of RAC transitions from shear failure to compression failure, and its peak strength, dynamic elastic modulus, and dilatancy angle all show a downward trend. A linear prediction model is established based on the strong correlation between peak strength and steam curing temperature. As the loading cycles increase, the dynamic elastic modulus and dilatancy angle of RAC show exponential and linear downward trends respectively, and the decline rate increases with the increase of steam curing temperature, and the prediction models for dynamic elastic modulus and dilatancy angle are established based on quantitative relationships between variables. On the basis of experimental analysis results, a cyclic triaxial DEM model considering real recycled aggregates is established by introducing steam-cured damage indexes into the mesoscopic parameters, and its applicability in predicting cyclic triaxial mechanical properties of RAC under different curing regimes is verified. The research outcomes can save a lot of test cost and time consumption for developing steam-cured concrete with better performance, and have important theoretical guidance and practical significance for the wide application of steam-cured concrete.</div></div>\",\"PeriodicalId\":11576,\"journal\":{\"name\":\"Engineering Fracture Mechanics\",\"volume\":\"312 \",\"pages\":\"Article 110643\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013794424008063\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424008063","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

蒸汽养护再生骨料混凝土(通常处于循环三轴应力状态)的工程应用不仅能提高资源的循环利用效率,还能加快施工进度。本文采用实验室实验、理论分析和数值模拟相结合的方法,研究了再生骨料混凝土(RAC)在不同养护制度(20℃、40℃、60℃和 80℃)下的循环三轴特性。结果表明,随着蒸汽固化温度的升高,高温造成的内部破坏不断加剧,RAC 的循环三轴破坏模式从剪切破坏过渡到压缩破坏,其峰值强度、动态弹性模量和膨胀角均呈下降趋势。根据峰值强度与蒸汽固化温度之间的强相关性,建立了一个线性预测模型。随着加载周期的增加,RAC 的动弹性模量和扩张角分别呈指数和线性下降趋势,且下降率随蒸汽固化温度的增加而增加,并根据变量间的定量关系建立了动弹性模量和扩张角的预测模型。在实验分析结果的基础上,通过在中观参数中引入蒸汽固化损伤指标,建立了考虑真实再生骨料的循环三轴 DEM 模型,并验证了其在预测不同固化制度下 RAC 循环三轴力学性能中的适用性。研究成果可为开发性能更优的蒸养混凝土节省大量试验成本和时间消耗,对蒸养混凝土的广泛应用具有重要的理论指导和实践意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of steam curing on cyclic triaxial characteristics of recycled aggregate concrete: Experimental analysis and DEM simulation
The engineering application of steam-cured recycled aggregate concrete (often in a cyclic triaxial stress state) can not only improve the recycling efficiency of resources, but also accelerate the construction progress. In this paper, we adopt a combination of laboratory experiments, theoretical analysis and numerical simulation to study the cyclic triaxial characteristics of recycled aggregate concrete (RAC) under different curing regimes (20℃, 40℃, 60℃ and 80℃). The results indicate that as the steam curing temperature increases, the internal damage caused by high temperature continues to intensify, and the cyclic triaxial failure mode of RAC transitions from shear failure to compression failure, and its peak strength, dynamic elastic modulus, and dilatancy angle all show a downward trend. A linear prediction model is established based on the strong correlation between peak strength and steam curing temperature. As the loading cycles increase, the dynamic elastic modulus and dilatancy angle of RAC show exponential and linear downward trends respectively, and the decline rate increases with the increase of steam curing temperature, and the prediction models for dynamic elastic modulus and dilatancy angle are established based on quantitative relationships between variables. On the basis of experimental analysis results, a cyclic triaxial DEM model considering real recycled aggregates is established by introducing steam-cured damage indexes into the mesoscopic parameters, and its applicability in predicting cyclic triaxial mechanical properties of RAC under different curing regimes is verified. The research outcomes can save a lot of test cost and time consumption for developing steam-cured concrete with better performance, and have important theoretical guidance and practical significance for the wide application of steam-cured concrete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
期刊最新文献
A novel method for failure probability prediction of plain weave composites considering loading randomness and dispersion of strength Effect of shrinkage-induced initial damage on the frost resistance of concrete in cold regions Predicting fracture strength of polarized GaN semiconductive ceramics under combined mechanical-current loading Multiaxial failure of dual-phase elastomeric composites Experimental and numerical investigation on the failure behaviors of laminates with various shaped cutouts under tensile loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1