{"title":"中国青岛海滨沉积物重金属污染磁力诊断模型","authors":"Wang Yong-Hong , Huang Yi-Heng , Liang Wei-Qiang","doi":"10.1016/j.jappgeo.2024.105553","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic techniques have been widely used in recent decades to determine heavy metal pollution in sediments due to their high sensitivity to magnetic particles and considerable measurement convenience. Beaches are usually greatly influenced by human activities, but pollution problems such as heavy metal pollution due to sewage discharge, nearby factories, and garbage disposal have reduced the tourism value and ecological environmental quality of beaches. In this study, three beaches in Qingdao city were chosen as examples, and a magnetic diagnostic model for heavy metal pollution in beach sediments was established using statistical methods. The results showed that beach No. 1 in Qingdao was not polluted, while the pollution level of beach No. 2 was lower than that of beach No. 3. Beach No. 2 exhibited slight Cr and Zn pollution and slight Fe enrichment, while beach No. 3 exhibited slight to severe Cr, Ni, and Zn pollution and severe Fe enrichment. The statistical model results indicated that χ, saturation isothermal remanent magnetization (SIRM), SOFT, and χ<sub>ARM</sub> are more suitable for establishing magnetic diagnostic models, and the pollution level, pollution source and diffusion range of heavy metal elements could be detected with this model. The main causes of pollution are sewage outlets and the disposal of artificial coal ash. When the magnetic susceptibility value of the 0.063–0.125 mm particle size fraction of Qingdao beach sediments is greater than 6000 × 10<sup>−8</sup> m<sup>3</sup>kg<sup>−1</sup>, attention should be given to possible contamination by heavy metals. In this study, we revealed that environmental magnetic methods can be employed to effectively determine the pollution level, source, and diffusion of heavy metals in beach sediments, which can facilitate the management of heavy metals and other pollutants in beach sediments and ecological environmental protection.</div></div>","PeriodicalId":54882,"journal":{"name":"Journal of Applied Geophysics","volume":"231 ","pages":"Article 105553"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic diagnosis model for heavy metal pollution in beach sediments of Qingdao, China\",\"authors\":\"Wang Yong-Hong , Huang Yi-Heng , Liang Wei-Qiang\",\"doi\":\"10.1016/j.jappgeo.2024.105553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnetic techniques have been widely used in recent decades to determine heavy metal pollution in sediments due to their high sensitivity to magnetic particles and considerable measurement convenience. Beaches are usually greatly influenced by human activities, but pollution problems such as heavy metal pollution due to sewage discharge, nearby factories, and garbage disposal have reduced the tourism value and ecological environmental quality of beaches. In this study, three beaches in Qingdao city were chosen as examples, and a magnetic diagnostic model for heavy metal pollution in beach sediments was established using statistical methods. The results showed that beach No. 1 in Qingdao was not polluted, while the pollution level of beach No. 2 was lower than that of beach No. 3. Beach No. 2 exhibited slight Cr and Zn pollution and slight Fe enrichment, while beach No. 3 exhibited slight to severe Cr, Ni, and Zn pollution and severe Fe enrichment. The statistical model results indicated that χ, saturation isothermal remanent magnetization (SIRM), SOFT, and χ<sub>ARM</sub> are more suitable for establishing magnetic diagnostic models, and the pollution level, pollution source and diffusion range of heavy metal elements could be detected with this model. The main causes of pollution are sewage outlets and the disposal of artificial coal ash. When the magnetic susceptibility value of the 0.063–0.125 mm particle size fraction of Qingdao beach sediments is greater than 6000 × 10<sup>−8</sup> m<sup>3</sup>kg<sup>−1</sup>, attention should be given to possible contamination by heavy metals. In this study, we revealed that environmental magnetic methods can be employed to effectively determine the pollution level, source, and diffusion of heavy metals in beach sediments, which can facilitate the management of heavy metals and other pollutants in beach sediments and ecological environmental protection.</div></div>\",\"PeriodicalId\":54882,\"journal\":{\"name\":\"Journal of Applied Geophysics\",\"volume\":\"231 \",\"pages\":\"Article 105553\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926985124002696\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926985124002696","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnetic diagnosis model for heavy metal pollution in beach sediments of Qingdao, China
Magnetic techniques have been widely used in recent decades to determine heavy metal pollution in sediments due to their high sensitivity to magnetic particles and considerable measurement convenience. Beaches are usually greatly influenced by human activities, but pollution problems such as heavy metal pollution due to sewage discharge, nearby factories, and garbage disposal have reduced the tourism value and ecological environmental quality of beaches. In this study, three beaches in Qingdao city were chosen as examples, and a magnetic diagnostic model for heavy metal pollution in beach sediments was established using statistical methods. The results showed that beach No. 1 in Qingdao was not polluted, while the pollution level of beach No. 2 was lower than that of beach No. 3. Beach No. 2 exhibited slight Cr and Zn pollution and slight Fe enrichment, while beach No. 3 exhibited slight to severe Cr, Ni, and Zn pollution and severe Fe enrichment. The statistical model results indicated that χ, saturation isothermal remanent magnetization (SIRM), SOFT, and χARM are more suitable for establishing magnetic diagnostic models, and the pollution level, pollution source and diffusion range of heavy metal elements could be detected with this model. The main causes of pollution are sewage outlets and the disposal of artificial coal ash. When the magnetic susceptibility value of the 0.063–0.125 mm particle size fraction of Qingdao beach sediments is greater than 6000 × 10−8 m3kg−1, attention should be given to possible contamination by heavy metals. In this study, we revealed that environmental magnetic methods can be employed to effectively determine the pollution level, source, and diffusion of heavy metals in beach sediments, which can facilitate the management of heavy metals and other pollutants in beach sediments and ecological environmental protection.
期刊介绍:
The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics.