Bingyao Li , Youming Li , Jingran Ge , Jianguo Wu , Zengwen Wu , Jun Liang
{"title":"考虑加载随机性和强度分散性的平纹复合材料失效概率预测新方法","authors":"Bingyao Li , Youming Li , Jingran Ge , Jianguo Wu , Zengwen Wu , Jun Liang","doi":"10.1016/j.engfracmech.2024.110649","DOIUrl":null,"url":null,"abstract":"<div><div>A new method based on combined residual stiffness-strength degradation is developed to predict the failure probability of plain weave composites subjected to random fatigue loadings. All the parameters presented in the proposed analytical model are characterized using the outcomes from quasi-static and constant amplitude fatigue testing. The evolution of residual strength is obtained based on combined residual stiffness-strength degradation model, which can greatly reduce the cost of the experiments. The Weibull distribution with two parameters is used to account for the dispersion of residual strength. Combing with randomness statistics of the fatigue loadings and the interference criterion of stress-strength, the fatigue failure behavior and failure probability are obtained. The narrow-band random vibration experiments were conducted to generate the random loadings and validate the predicted results. The approach proposed in this paper takes full advantage of residual stiffness or residual strength method and has better accuracy.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"312 ","pages":"Article 110649"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method for failure probability prediction of plain weave composites considering loading randomness and dispersion of strength\",\"authors\":\"Bingyao Li , Youming Li , Jingran Ge , Jianguo Wu , Zengwen Wu , Jun Liang\",\"doi\":\"10.1016/j.engfracmech.2024.110649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A new method based on combined residual stiffness-strength degradation is developed to predict the failure probability of plain weave composites subjected to random fatigue loadings. All the parameters presented in the proposed analytical model are characterized using the outcomes from quasi-static and constant amplitude fatigue testing. The evolution of residual strength is obtained based on combined residual stiffness-strength degradation model, which can greatly reduce the cost of the experiments. The Weibull distribution with two parameters is used to account for the dispersion of residual strength. Combing with randomness statistics of the fatigue loadings and the interference criterion of stress-strength, the fatigue failure behavior and failure probability are obtained. The narrow-band random vibration experiments were conducted to generate the random loadings and validate the predicted results. The approach proposed in this paper takes full advantage of residual stiffness or residual strength method and has better accuracy.</div></div>\",\"PeriodicalId\":11576,\"journal\":{\"name\":\"Engineering Fracture Mechanics\",\"volume\":\"312 \",\"pages\":\"Article 110649\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013794424008129\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424008129","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
A novel method for failure probability prediction of plain weave composites considering loading randomness and dispersion of strength
A new method based on combined residual stiffness-strength degradation is developed to predict the failure probability of plain weave composites subjected to random fatigue loadings. All the parameters presented in the proposed analytical model are characterized using the outcomes from quasi-static and constant amplitude fatigue testing. The evolution of residual strength is obtained based on combined residual stiffness-strength degradation model, which can greatly reduce the cost of the experiments. The Weibull distribution with two parameters is used to account for the dispersion of residual strength. Combing with randomness statistics of the fatigue loadings and the interference criterion of stress-strength, the fatigue failure behavior and failure probability are obtained. The narrow-band random vibration experiments were conducted to generate the random loadings and validate the predicted results. The approach proposed in this paper takes full advantage of residual stiffness or residual strength method and has better accuracy.
期刊介绍:
EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.