海量数据半参数乘法回归的分布式最小乘积相对误差估计

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Sciences Pub Date : 2024-11-05 DOI:10.1016/j.ins.2024.121614
Yuhao Zou , Xiaohui Yuan , Tianqing Liu
{"title":"海量数据半参数乘法回归的分布式最小乘积相对误差估计","authors":"Yuhao Zou ,&nbsp;Xiaohui Yuan ,&nbsp;Tianqing Liu","doi":"10.1016/j.ins.2024.121614","DOIUrl":null,"url":null,"abstract":"<div><div>Distributed systems have been widely used for massive data analysis, but few studies focus on multiplicative regression models. We consider a communication-efficient surrogate likelihood method using the Least Product Relative Error criterion for semi-parametric multiplicative models on massive datasets. The non-parametric component is efficiently handled via B-spline approximation. We derive the asymptotic properties for both parametric and non-parametric components, while the SCAD and adaptive Lasso penalty functions are developed and their oracle properties for variable selection are validated. Simulation studies and an application to an energy prediction dataset are used to demonstrate the effectiveness and practical utility of the proposed method.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"691 ","pages":"Article 121614"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Least Product Relative Error estimation for semi-parametric multiplicative regression with massive data\",\"authors\":\"Yuhao Zou ,&nbsp;Xiaohui Yuan ,&nbsp;Tianqing Liu\",\"doi\":\"10.1016/j.ins.2024.121614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Distributed systems have been widely used for massive data analysis, but few studies focus on multiplicative regression models. We consider a communication-efficient surrogate likelihood method using the Least Product Relative Error criterion for semi-parametric multiplicative models on massive datasets. The non-parametric component is efficiently handled via B-spline approximation. We derive the asymptotic properties for both parametric and non-parametric components, while the SCAD and adaptive Lasso penalty functions are developed and their oracle properties for variable selection are validated. Simulation studies and an application to an energy prediction dataset are used to demonstrate the effectiveness and practical utility of the proposed method.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"691 \",\"pages\":\"Article 121614\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025524015287\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015287","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

分布式系统已被广泛用于海量数据分析,但很少有研究关注乘法回归模型。我们考虑了一种通信效率高的代理似然法,该方法使用最小乘积相对误差准则,用于海量数据集上的半参数乘法模型。非参数部分通过 B-样条近似得到有效处理。我们推导了参数和非参数部分的渐近特性,同时开发了 SCAD 和自适应 Lasso 惩罚函数,并验证了它们在变量选择方面的 Oracle 特性。仿真研究和能源预测数据集应用证明了所提方法的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Least Product Relative Error estimation for semi-parametric multiplicative regression with massive data
Distributed systems have been widely used for massive data analysis, but few studies focus on multiplicative regression models. We consider a communication-efficient surrogate likelihood method using the Least Product Relative Error criterion for semi-parametric multiplicative models on massive datasets. The non-parametric component is efficiently handled via B-spline approximation. We derive the asymptotic properties for both parametric and non-parametric components, while the SCAD and adaptive Lasso penalty functions are developed and their oracle properties for variable selection are validated. Simulation studies and an application to an energy prediction dataset are used to demonstrate the effectiveness and practical utility of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
期刊最新文献
Editorial Board Community structure testing by counting frequent common neighbor sets Finite-time secure synchronization for stochastic complex networks with delayed coupling under deception attacks: A two-step switching control scheme Adaptive granular data compression and interval granulation for efficient classification Introducing fairness in network visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1